Experimental and modeling phase equilibria of gas hydrate systems for post-combustion CO2 capture

被引:16
|
作者
Li, Luling [1 ,2 ]
Fan, Shuanshi [1 ,3 ]
Chen, Qiuxiong [2 ]
Yang, Guang [2 ]
Zhao, Jinzhou [1 ]
Wei, Na [1 ]
Wen, Yonggang [2 ]
机构
[1] Southwest Petr Univ, State Key Lab Oil & Gas Reservoir Geol & Exploita, 8 Xindu Ave, Chengdu 610500, Sichuan, Peoples R China
[2] China Shenzhen Gas Corp Ltd, Shenzhen 518040, Peoples R China
[3] South China Univ Technol, Sch Chem & Chem Engn, Key Lab Enhanced Heat Transfer & Energy Conservat, Minist Educ, Guangzhou 510640, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
CO2; capture; Gas hydrate; CPA-EoS; Thermodynamic mode; Experimental data; Chen-Guo; CARBON-DIOXIDE SEPARATION; VAPOR-LIQUID-EQUILIBRIA; EQUATION-OF-STATE; HYDROGEN-SULFIDE; WATER-CONTENT; SOLUBILITY; PREDICTION; MIXTURES; DISSOCIATION; SIMULATION;
D O I
10.1016/j.jtice.2018.11.007
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Accurate knowledge of hydrate phase equilibria is of fundament in terms of the hydrate-based gas separation process (HBGS) for post-combustion CO2 capture. In this work, we experimentally investigated the phase equilibria of flue gas during hydrate-based CO2 capture. Additionally, new experimental data for dissociation pressure of flue gases with different CO2 concentration were reported. Subsequently, a more accurate thermodynamic model combining Cubic-Plus-Association Equation of State (CPA-EoS) and Chen-Guo model was employed to predict the dissociation pressure of flue gases. To better perform the hydrate equilibria, a temperature dependent binary interaction parameter k(ij) and new parameters for Chen-Guo model were developed. The results showed that the general tender of the new experimental data was in line with previous results. In addition, an improved accuracy was noticed for the mixtures with an Average Absolution Deviation (MD) approximately to 4.07%, through comparing the predicted results with the experimental data. Especially, in terms of the gases with a CO2 concentration less than 85.32%, the improvement was significant. Lastly, this work also utilized the thermodynamic model and the Clausius-Clapeyron equation to predict the dissociation enthalpies of CO2 hydrate. The results showed that the prediction results were located in the margin of experimental data, which demonstrated the thermodynamic model proposed in our work was capable of describing the gas hydrate behavior with high accuracy. (C) 2018 Taiwan Institute of Chemical Engineers. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:35 / 44
页数:10
相关论文
共 50 条
  • [21] Thermodynamic Modeling Study on Phase Equilibrium of Gas Hydrate Systems for CO2 Capture
    Banafi, Ahmad
    Mohamadi-Baghmolaei, Mohamad
    Hajizadeh, Abdollah
    Azin, Reza
    Izadpanah, Amir Abbas
    JOURNAL OF SOLUTION CHEMISTRY, 2019, 48 (11-12) : 1461 - 1487
  • [22] Part 3: Corrosion and prevention in post-combustion CO2 capture systems
    Saiwan, Chintana
    Supap, Teeradet
    Idem, Raphael O.
    Tontiwachwuthikul, Paitoon
    CARBON MANAGEMENT, 2011, 2 (06) : 659 - 675
  • [23] Dynamic Modeling of Post-combustion CO2 Capture Using Amines - A Review.
    Chikukwa, Actor
    Enaasen, Nina
    Kvamsdal, Hanne M.
    Hillestad, Magne
    6TH TRONDHEIM CONFERENCE ON CO2 CAPTURE, TRANSPORT AND STORAGE, 2012, 23 : 82 - 91
  • [24] Thermal degradation of morpholine in CO2 post-combustion capture
    Ogidi, Michael O.
    Thompson, Warren A.
    Maroto-Valer, M. Mercedes
    13TH INTERNATIONAL CONFERENCE ON GREENHOUSE GAS CONTROL TECHNOLOGIES, GHGT-13, 2017, 114 : 1033 - 1037
  • [25] Highly efficient absorbents for post-combustion CO2 capture
    Shim, Jae-Goo
    Kim, Jun-Han
    Lee, Ji Hyun
    Jang, Kyung-Ryong
    GREENHOUSE GAS CONTROL TECHNOLOGIES 9, 2009, 1 (01): : 779 - 782
  • [26] New solvent blends for post-combustion CO2 capture
    Hanna K.Knuutila
    Rune Rennemo
    Arlinda F.Ciftja
    GreenEnergy&Environment, 2019, 4 (04) : 439 - 452
  • [27] Advancement in porous adsorbents for post-combustion CO2 capture
    Modak, Arindam
    Jana, Subhra
    MICROPOROUS AND MESOPOROUS MATERIALS, 2019, 276 : 107 - 132
  • [28] Optimisation of post-combustion CO2 capture for flexible operation
    Mac Dowell, N.
    Shah, N.
    12TH INTERNATIONAL CONFERENCE ON GREENHOUSE GAS CONTROL TECHNOLOGIES, GHGT-12, 2014, 63 : 1525 - 1535
  • [29] Dynamic modeling and validation of absorber and desorber columns for post-combustion CO2 capture
    Gaspar, Jozsef
    Cormos, Ana-Maria
    COMPUTERS & CHEMICAL ENGINEERING, 2011, 35 (10) : 2044 - 2052
  • [30] Analysis and status of post-combustion CO2 capture technologies
    Bhown, Abhoyjit S.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 243