Hyperspectral Remote Sensing Data Analysis and Future Challenges

被引:1631
|
作者
Bioucas-Dias, Jose M. [1 ]
Plaza, Antonio [2 ]
Camps-Valls, Gustavo [3 ]
Scheunders, Paul [4 ]
Nasrabadi, Nasser M. [5 ]
Chanussot, Jocelyn [6 ]
机构
[1] Inst Super Tecn, Inst Telecomunicacoes, P-10491 Lisbon, Portugal
[2] Univ Extremadura, Escuela Politecn Caceres, Dept Technol Comp & Commun, Hyperspectral Comp Lab, Caceres 10003, Spain
[3] Univ Valencia, Image Proc Lab, E-46980 Paterna, Valencia, Spain
[4] Univ Antwerp, Vis Lab, Dept Phys, iMinds, B-2610 Antwerp, Belgium
[5] US Army Res Lab, Adelphi, MD 20783 USA
[6] Grenoble Inst Technol, GIPSA Lab, Grenoble, France
关键词
MULTINOMIAL LOGISTIC-REGRESSION; NEURAL-NETWORK ESTIMATION; LEAF-AREA INDEX; ANOMALY DETECTION; IMAGE CLASSIFICATION; ENDMEMBER EXTRACTION; SPATIAL-RESOLUTION; MULTISPECTRAL DATA; COMPONENT ANALYSIS; TARGET DETECTION;
D O I
10.1109/MGRS.2013.2244672
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Hyperspectral remote sensing technology has advanced significantly in the past two decades. Current sensors onboard airborne and spaceborne platforms cover large areas of the Earth surface with unprecedented spectral, spatial, and temporal resolutions. These characteristics enable a myriad of applications requiring fine identification of materials or estimation of physical parameters. Very often, these applications rely on sophisticated and complex data analysis methods. The sources of difficulties are, namely, the high dimensionality and size of the hyperspectral data, the spectral mixing (linear and nonlinear), and the degradation mechanisms associated to the measurement process such as noise and atmospheric effects. This paper presents a tutorial/overview cross section of some relevant hyperspectral data analysis methods and algorithms, organized in six main topics: data fusion, unmixing, classification, target detection, physical parameter retrieval, and fast computing. In all topics, we describe the state-of-the-art, provide illustrative examples, and point to future challenges and research directions.
引用
收藏
页码:6 / 36
页数:31
相关论文
共 50 条
  • [41] EVALUATION OF SIMILARITY MEASURE METHODS FOR HYPERSPECTRAL REMOTE SENSING DATA
    Zhang, Junzhe
    Zhu, Wenquan
    Wang, Lingli
    Jiang, Nan
    2012 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2012, : 4138 - 4141
  • [42] An evaluation of wavelet-denoised hyperspectral data for remote sensing
    Othman, Hisham
    Qian, Shen-En
    CANADIAN JOURNAL OF REMOTE SENSING, 2008, 34 : S59 - S67
  • [43] Data processing and application of thermal infrared hyperspectral remote sensing
    Xie, Feng
    Yang, Gui
    Liu, Chengyu
    Liu, Zhihui
    Zhang, Changxing
    Shao, Honglan
    Wang, Jianyu
    Cai, Nengbin
    MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL REMOTE SENSING TECHNOLOGY, TECHNIQUES AND APPLICATIONS VI, 2016, 9880
  • [44] Remote Sensing of Soil Moisture Using Airborne Hyperspectral Data
    Finn, Michael P.
    Lewis, Mark
    Bosch, David D.
    Giraldo, Mario
    Yamamoto, Kristina
    Sullivan, Dana G.
    Kincaid, Russell
    GISCIENCE & REMOTE SENSING, 2011, 48 (04) : 522 - 540
  • [45] Spectral characteristics and feature selection of hyperspectral remote sensing data
    Jiang, XG
    Tang, LL
    Wang, CY
    Wang, C
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2004, 25 (01) : 51 - 59
  • [46] Monitoring an invasive plant using hyperspectral remote sensing data
    Wan H.
    Wang C.
    Li Y.
    Wang Q.
    Li J.
    Liu X.
    Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 2010, 26 (SUPPL. 2): : 59 - 63
  • [47] Selection Strategy of Classification Methods for Hyperspectral Remote Sensing Data
    Shang, Kun
    Xiao, Chenchao
    Wei, Hongyan
    Xie, Yisong
    2016 4rth International Workshop on Earth Observation and Remote Sensing Applications (EORSA), 2016,
  • [48] Study on gas exploration by hyperion hyperspectral remote sensing data
    School of Information Science and Technology, Beijing Institute of Technology, Beijing 100081, China
    不详
    Hongwai Yu Haomibo Xuebao/Journal of Infrared and Millimeter Waves, 2008, 27 (03): : 210 - 213
  • [49] Multiple Classifier Systems for Hyperspectral Remote Sensing Data Classification
    Iman Khosravi
    Majid Mohammad-Beigi
    Journal of the Indian Society of Remote Sensing, 2014, 42 : 423 - 428
  • [50] FODSPO BASED FEATURE SELECTION FOR HYPERSPECTRAL REMOTE SENSING DATA
    Ghamisi, Pedram
    Couceiro, Micael S.
    Benediktsson, Jon Atli
    2014 6TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2014,