Hyperspectral Remote Sensing Data Analysis and Future Challenges

被引:1631
|
作者
Bioucas-Dias, Jose M. [1 ]
Plaza, Antonio [2 ]
Camps-Valls, Gustavo [3 ]
Scheunders, Paul [4 ]
Nasrabadi, Nasser M. [5 ]
Chanussot, Jocelyn [6 ]
机构
[1] Inst Super Tecn, Inst Telecomunicacoes, P-10491 Lisbon, Portugal
[2] Univ Extremadura, Escuela Politecn Caceres, Dept Technol Comp & Commun, Hyperspectral Comp Lab, Caceres 10003, Spain
[3] Univ Valencia, Image Proc Lab, E-46980 Paterna, Valencia, Spain
[4] Univ Antwerp, Vis Lab, Dept Phys, iMinds, B-2610 Antwerp, Belgium
[5] US Army Res Lab, Adelphi, MD 20783 USA
[6] Grenoble Inst Technol, GIPSA Lab, Grenoble, France
关键词
MULTINOMIAL LOGISTIC-REGRESSION; NEURAL-NETWORK ESTIMATION; LEAF-AREA INDEX; ANOMALY DETECTION; IMAGE CLASSIFICATION; ENDMEMBER EXTRACTION; SPATIAL-RESOLUTION; MULTISPECTRAL DATA; COMPONENT ANALYSIS; TARGET DETECTION;
D O I
10.1109/MGRS.2013.2244672
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Hyperspectral remote sensing technology has advanced significantly in the past two decades. Current sensors onboard airborne and spaceborne platforms cover large areas of the Earth surface with unprecedented spectral, spatial, and temporal resolutions. These characteristics enable a myriad of applications requiring fine identification of materials or estimation of physical parameters. Very often, these applications rely on sophisticated and complex data analysis methods. The sources of difficulties are, namely, the high dimensionality and size of the hyperspectral data, the spectral mixing (linear and nonlinear), and the degradation mechanisms associated to the measurement process such as noise and atmospheric effects. This paper presents a tutorial/overview cross section of some relevant hyperspectral data analysis methods and algorithms, organized in six main topics: data fusion, unmixing, classification, target detection, physical parameter retrieval, and fast computing. In all topics, we describe the state-of-the-art, provide illustrative examples, and point to future challenges and research directions.
引用
收藏
页码:6 / 36
页数:31
相关论文
共 50 条
  • [21] Study on data mining technology in hyperspectral remote sensing
    Su, Hongjun
    Sheng, Yehua
    Wen, Yongning
    Tao, Hong
    GEOINFORMATICS 2007: REMOTELY SENSED DATA AND INFORMATION, PTS 1 AND 2, 2007, 6752
  • [22] Ensemble Strategies for Classifying Hyperspectral Remote Sensing Data
    Ceamanos, Xavier
    Waske, Bjorn
    Benediktsson, Jon Atli
    Chanussot, Jocelyn
    Sveinsson, Johannes R.
    MULTIPLE CLASSIFIER SYSTEMS, PROCEEDINGS, 2009, 5519 : 62 - +
  • [23] Automation of hyperspectral airborne remote sensing data processing
    V. V. Kozoderov
    V. D. Egorov
    Izvestiya, Atmospheric and Oceanic Physics, 2014, 50 : 853 - 866
  • [24] Stress detection in orchards with hyperspectral remote sensing data
    Kempeneers, P.
    De Backer, S.
    Zarco-Tejada, P. J.
    Delalieux, S.
    Sepulcre-Canto, G.
    Iribas, F. Morales
    van Aardt, J.
    Coppin, P.
    Scheunders, P.
    REMOTE SENSING FOR AGRICULTURE, ECOSYSTEMS, AND HYDROLOGY VIII, 2006, 6359
  • [25] Artificial Intelligence for Remote Sensing Data Analysis A Review of Challenges and Opportunities
    Zhang, Lefei
    Zhang, Liangpei
    IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE, 2022, 10 (02) : 270 - 294
  • [26] Hyperspectral remote sensing image intrinsic information decomposition: Advances and challenges
    Li S.
    Wu Q.
    Kang X.
    Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2023, 52 (07): : 1059 - 1073
  • [27] Target Detection in Hyperspectral Remote Sensing Image: Current Status and Challenges
    Chen, Bowen
    Liu, Liqin
    Zou, Zhengxia
    Shi, Zhenwei
    REMOTE SENSING, 2023, 15 (13)
  • [28] Feature extraction of hyperspectral remote sensing data using supervised neighbor reconstruction analysis
    Fang M.
    Wang J.
    Wang H.
    Li T.
    1600, Chinese Society of Astronautics (45):
  • [29] Analysis of sapling density regeneration in Yellowstone National Park with hyperspectral remote sensing data
    Potter, Christopher
    Li, Shuang
    Huang, Shengli
    Crabtree, Robert L.
    REMOTE SENSING OF ENVIRONMENT, 2012, 121 : 61 - 68
  • [30] Big Data for Remote Sensing: Challenges and Opportunities
    Chi, Mingmin
    Plaza, Antonio
    Benediktsson, Jon Atli
    Sun, Zhongyi
    Shen, Jinsheng
    Zhu, Yangyong
    PROCEEDINGS OF THE IEEE, 2016, 104 (11) : 2207 - 2219