Hyperspectral Remote Sensing Data Analysis and Future Challenges

被引:1631
|
作者
Bioucas-Dias, Jose M. [1 ]
Plaza, Antonio [2 ]
Camps-Valls, Gustavo [3 ]
Scheunders, Paul [4 ]
Nasrabadi, Nasser M. [5 ]
Chanussot, Jocelyn [6 ]
机构
[1] Inst Super Tecn, Inst Telecomunicacoes, P-10491 Lisbon, Portugal
[2] Univ Extremadura, Escuela Politecn Caceres, Dept Technol Comp & Commun, Hyperspectral Comp Lab, Caceres 10003, Spain
[3] Univ Valencia, Image Proc Lab, E-46980 Paterna, Valencia, Spain
[4] Univ Antwerp, Vis Lab, Dept Phys, iMinds, B-2610 Antwerp, Belgium
[5] US Army Res Lab, Adelphi, MD 20783 USA
[6] Grenoble Inst Technol, GIPSA Lab, Grenoble, France
关键词
MULTINOMIAL LOGISTIC-REGRESSION; NEURAL-NETWORK ESTIMATION; LEAF-AREA INDEX; ANOMALY DETECTION; IMAGE CLASSIFICATION; ENDMEMBER EXTRACTION; SPATIAL-RESOLUTION; MULTISPECTRAL DATA; COMPONENT ANALYSIS; TARGET DETECTION;
D O I
10.1109/MGRS.2013.2244672
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Hyperspectral remote sensing technology has advanced significantly in the past two decades. Current sensors onboard airborne and spaceborne platforms cover large areas of the Earth surface with unprecedented spectral, spatial, and temporal resolutions. These characteristics enable a myriad of applications requiring fine identification of materials or estimation of physical parameters. Very often, these applications rely on sophisticated and complex data analysis methods. The sources of difficulties are, namely, the high dimensionality and size of the hyperspectral data, the spectral mixing (linear and nonlinear), and the degradation mechanisms associated to the measurement process such as noise and atmospheric effects. This paper presents a tutorial/overview cross section of some relevant hyperspectral data analysis methods and algorithms, organized in six main topics: data fusion, unmixing, classification, target detection, physical parameter retrieval, and fast computing. In all topics, we describe the state-of-the-art, provide illustrative examples, and point to future challenges and research directions.
引用
收藏
页码:6 / 36
页数:31
相关论文
共 50 条
  • [31] Data handling challenges for remote sensing systems
    Coupe, JM
    2004 IEEE AEROSPACE CONFERENCE PROCEEDINGS, VOLS 1-6, 2004, : 2263 - 2268
  • [32] Hyperspectral remote sensing of fire: State-of-the-art and future perspectives
    Veraverbeke, Sander
    Dennison, Philip
    Gitas, Ioannis
    Hulley, Glynn
    Kalashnikova, Olga
    Katagis, Thomas
    Kuai, Le
    Meng, Ran
    Roberts, Dar
    Stavros, Natasha
    REMOTE SENSING OF ENVIRONMENT, 2018, 216 : 105 - 121
  • [33] Context Modeling in Problems of Compressing Hyperspectral Remote Sensing Data
    Pertsau, D. Yu
    Doudkin, A. A.
    PATTERN RECOGNITION AND IMAGE ANALYSIS, 2020, 30 (02) : 217 - 223
  • [34] A Multiple SVM System for Classification of Hyperspectral Remote Sensing Data
    Behnaz Bigdeli
    Farhad Samadzadegan
    Peter Reinartz
    Journal of the Indian Society of Remote Sensing, 2013, 41 : 763 - 776
  • [35] Context Modeling in Problems of Compressing Hyperspectral Remote Sensing Data
    D. Yu. Pertsau
    A. A. Doudkin
    Pattern Recognition and Image Analysis, 2020, 30 : 217 - 223
  • [36] A Multiple SVM System for Classification of Hyperspectral Remote Sensing Data
    Bigdeli, Behnaz
    Samadzadegan, Farhad
    Reinartz, Peter
    JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2013, 41 (04) : 763 - 776
  • [37] Multiple Classifier Systems for Hyperspectral Remote Sensing Data Classification
    Khosravi, Iman
    Mohammad-Beigi, Majid
    JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2014, 42 (02) : 423 - 428
  • [38] Study on gas exploration by Hyperion hyperspectral remote sensing data
    Shen Yuan-Ting
    Ni Guo-Qiang
    Xu Da-Qi
    Jiang Li-Li
    He Jin-Ping
    JOURNAL OF INFRARED AND MILLIMETER WAVES, 2008, 27 (03) : 210 - +
  • [39] A new algorithm for atmospheric correction of hyperspectral remote sensing data
    Montes, MJ
    Gao, BC
    Davis, CO
    GEO-SPATIAL IMAGE AND DATA EXPLOITATION II, 2001, 4383 : 23 - 30
  • [40] Evaluation of kernels for multiclass classification of hyperspectral remote sensing data
    Fauvel, Mathieu
    Chanussot, Jocelyn
    Benediktsson, Jon Atli
    2006 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-13, 2006, : 2061 - 2064