Hyperspectral Remote Sensing Data Analysis and Future Challenges

被引:1631
|
作者
Bioucas-Dias, Jose M. [1 ]
Plaza, Antonio [2 ]
Camps-Valls, Gustavo [3 ]
Scheunders, Paul [4 ]
Nasrabadi, Nasser M. [5 ]
Chanussot, Jocelyn [6 ]
机构
[1] Inst Super Tecn, Inst Telecomunicacoes, P-10491 Lisbon, Portugal
[2] Univ Extremadura, Escuela Politecn Caceres, Dept Technol Comp & Commun, Hyperspectral Comp Lab, Caceres 10003, Spain
[3] Univ Valencia, Image Proc Lab, E-46980 Paterna, Valencia, Spain
[4] Univ Antwerp, Vis Lab, Dept Phys, iMinds, B-2610 Antwerp, Belgium
[5] US Army Res Lab, Adelphi, MD 20783 USA
[6] Grenoble Inst Technol, GIPSA Lab, Grenoble, France
关键词
MULTINOMIAL LOGISTIC-REGRESSION; NEURAL-NETWORK ESTIMATION; LEAF-AREA INDEX; ANOMALY DETECTION; IMAGE CLASSIFICATION; ENDMEMBER EXTRACTION; SPATIAL-RESOLUTION; MULTISPECTRAL DATA; COMPONENT ANALYSIS; TARGET DETECTION;
D O I
10.1109/MGRS.2013.2244672
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Hyperspectral remote sensing technology has advanced significantly in the past two decades. Current sensors onboard airborne and spaceborne platforms cover large areas of the Earth surface with unprecedented spectral, spatial, and temporal resolutions. These characteristics enable a myriad of applications requiring fine identification of materials or estimation of physical parameters. Very often, these applications rely on sophisticated and complex data analysis methods. The sources of difficulties are, namely, the high dimensionality and size of the hyperspectral data, the spectral mixing (linear and nonlinear), and the degradation mechanisms associated to the measurement process such as noise and atmospheric effects. This paper presents a tutorial/overview cross section of some relevant hyperspectral data analysis methods and algorithms, organized in six main topics: data fusion, unmixing, classification, target detection, physical parameter retrieval, and fast computing. In all topics, we describe the state-of-the-art, provide illustrative examples, and point to future challenges and research directions.
引用
收藏
页码:6 / 36
页数:31
相关论文
共 50 条
  • [1] Polynomial expression for analysis of hyperspectral remote sensing data
    Liu, Q
    Liu, QH
    Menenti, M
    IGARSS 2003: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS I - VII, PROCEEDINGS: LEARNING FROM EARTH'S SHAPES AND SIZES, 2003, : 3763 - 3765
  • [2] Hyperspectral remote sensing of cyanobacteria: successes and challenges
    Mishra, Deepak R.
    Mishra, Sachidananda
    Narumalani, Sunil
    MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL REMOTE SENSING TECHNOLOGY, TECHNIQUES AND APPLICATIONS V, 2014, 9263
  • [3] Ocean Remote Sensing: Challenges for the future
    Chapron, Bertrand
    Garello, Rene
    Weissman, David E.
    OCEANS 2008, VOLS 1-4, 2008, : 2167 - +
  • [4] Survey on Remote Sensing Data Augmentation: Advances, Challenges, and Future Perspectives
    Oubara, Amel
    Wu, Falin
    Amamra, Abdenour
    Yang, Gongliu
    ADVANCES IN COMPUTING SYSTEMS AND APPLICATIONS, 2022, 513 : 95 - 104
  • [5] Applications and challenges of hyperspectral remote sensing in the colombian geology
    Camacho-Velasco, Ariolfo
    Augusto Vargas-Garcia, Cesar
    Antonio Rojas-Morales, Fernando
    Fernando Castillo-Castelblanco, Sergio
    Arguello-Fuentes, Henry
    REVISTA FACULTAD DE INGENIERIA, UNIVERSIDAD PEDAGOGICA Y TECNOLOGICA DE COLOMBIA, 2015, 24 (40): : 17 - 29
  • [6] An advanced semisupervised SVM classifier for the analysis of hyperspectral remote sensing data
    Bruzzone, Lorenzo
    Marconcini, Mattia
    IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XII, 2006, 6365
  • [7] HYPERSPECTRAL REMOTE SENSING DATA COMPRESSION AND PROTECTION
    Gashnikov, M. V.
    Glumov, N. I.
    Kuznetsov, A. V.
    Mitekin, V. A.
    Myasnikov, V. V.
    Sergeev, V. V.
    COMPUTER OPTICS, 2016, 40 (05) : 689 - 712
  • [8] Role of hyperspectral remote sensing in a digital mine of future
    Shailesh Deshpande
    CSI Transactions on ICT, 2024, 12 (1-3) : 13 - 24
  • [9] Streaming Remote Sensing Data Processing for the Future Smart Cities: State of the Art and Future Challenges
    Sun, Xihuang
    Liu, Peng
    Ma, Yan
    Liu, Dingsheng
    Sun, Yechao
    INTERNATIONAL JOURNAL OF DISTRIBUTED SYSTEMS AND TECHNOLOGIES, 2016, 7 (01) : 1 - 14
  • [10] Dimensionality Reduction for Hyperspectral Remote Sensing: Advances, Challenges and Prospects
    Su H.
    National Remote Sensing Bulletin, 2022, 26 (08) : 1504 - 1529