We prove two new equivalences of the Feichtinger conjecture that involve reproducing kernel Hilbert spaces. We prove that if for every Hilbert space, contractively contained in the Hardy space, each Bessel sequence of normalized kernel functions can be partitioned into finitely many Riesz basic sequences, then a general bounded Bessel sequence in an arbitrary Hilbert space can be partitioned into finitely many Riesz basic sequences. In addition, we examine some of these spaces and prove that for these spaces bounded Bessel sequences of normalized kernel functions are finite unions of Riesz basic sequences.
机构:
Kharazmi Univ, Fac Math Sci & Comp, Dept Math, 50 Taleghani Ave, Tehran 1561836314, IranKharazmi Univ, Fac Math Sci & Comp, Dept Math, 50 Taleghani Ave, Tehran 1561836314, Iran
Moradi, E.
Babolian, E.
论文数: 0引用数: 0
h-index: 0
机构:
Kharazmi Univ, Fac Math Sci & Comp, Dept Math, 50 Taleghani Ave, Tehran 1561836314, IranKharazmi Univ, Fac Math Sci & Comp, Dept Math, 50 Taleghani Ave, Tehran 1561836314, Iran
Babolian, E.
Javadi, S.
论文数: 0引用数: 0
h-index: 0
机构:
Kharazmi Univ, Fac Math Sci & Comp, Dept Math, 50 Taleghani Ave, Tehran 1561836314, IranKharazmi Univ, Fac Math Sci & Comp, Dept Math, 50 Taleghani Ave, Tehran 1561836314, Iran
机构:
Jilin Univ, Sch Math, Changchun 130012, Peoples R ChinaJilin Univ, Sch Math, Changchun 130012, Peoples R China
Wang, Rui
Zhang, Haizhang
论文数: 0引用数: 0
h-index: 0
机构:
Sun Yat Sen Univ, Sch Data & Comp Sci, Guangzhou 510275, Guangdong, Peoples R China
Sun Yat Sen Univ, Guangdong Prov Key Lab Computat Sci, Guangzhou 510275, Guangdong, Peoples R ChinaJilin Univ, Sch Math, Changchun 130012, Peoples R China