Uniform distribution, discrepancy, and reproducing kernel Hilbert spaces

被引:9
|
作者
Amstler, C
Zinterhof, P
机构
[1] Salzburg Univ, Dept Comp Sci, A-5020 Salzburg, Austria
[2] Salzburg Univ, Dept Math, A-5020 Salzburg, Austria
关键词
abstract uniform distributions discrepancy; numerical integration; reproducing kernel Hilbert spaces;
D O I
10.1006/jcom.2001.0580
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper we define a notion of uniform distribution and discrepancy of sequences in an abstract set E through reproducing kernel Hilbert spaces of functions on E. In the case of the finite-dimensional unit cube these discrepancies are very closely related to the worst case error obtained for numerical integration of functions in a reproducing kernel Hilbert space. In the compact case we show that the discrepancy tends to zero if and only if the sequence is uniformly distributed in our sense. Next we prove an existence theorem for such uniformly distributed sequences and investigate the relation to the classical notion of uniform distribution. Some examples conclude this paper. (C) 2001 Academic Press.
引用
收藏
页码:497 / 515
页数:19
相关论文
共 50 条
  • [1] A new kernel method for the uniform approximation in reproducing kernel Hilbert spaces
    Themistoclakis, Woula
    Van Barel, Marc
    APPLIED MATHEMATICS LETTERS, 2024, 153
  • [2] Reproducing kernel hilbert spaces
    Seddighi, K.
    Iranian Journal of Science & Technology, 1993, 17 (03):
  • [3] Pasting Reproducing Kernel Hilbert Spaces
    Sawano, Yoshihiro
    NEW TRENDS IN ANALYSIS AND INTERDISCIPLINARY APPLICATIONS, 2017, : 401 - 407
  • [4] Noncommutative reproducing kernel Hilbert spaces
    Ball, Joseph A.
    Marx, Gregory
    Vinnikov, Victor
    JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 271 (07) : 1844 - 1920
  • [5] On isomorphism of reproducing kernel Hilbert spaces
    V. V. Napalkov
    V. V. Napalkov
    Doklady Mathematics, 2017, 95 : 270 - 272
  • [6] A Primer on Reproducing Kernel Hilbert Spaces
    Manton, Jonathan H.
    Amblard, Pierre-Olivier
    FOUNDATIONS AND TRENDS IN SIGNAL PROCESSING, 2014, 8 (1-2): : 1 - 126
  • [7] On reproducing kernel Hilbert spaces of polynomials
    Li, XJ
    MATHEMATISCHE NACHRICHTEN, 1997, 185 : 115 - 148
  • [8] RELATIVE REPRODUCING KERNEL HILBERT SPACES
    Alpay, Daniel
    Jorgensen, Palle
    Volok, Dan
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 142 (11) : 3889 - 3895
  • [9] On isomorphism of reproducing kernel Hilbert spaces
    Napalkov, V. V.
    Napalkov, V. V., Jr.
    DOKLADY MATHEMATICS, 2017, 95 (03) : 270 - 272
  • [10] Reproducing Kernel Hilbert Spaces and fractal interpolation
    Bouboulis, P.
    Mavroforakis, M.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 235 (12) : 3425 - 3434