The Feichtinger Conjecture and Reproducing Kernel Hilbert Spaces

被引:0
|
作者
Lata, Sneh [1 ]
Paulsen, Vern [1 ]
机构
[1] Univ Houston, Dept Math, Houston, TX 77204 USA
关键词
de Branges space; Feichtinger conjecture; reproducing kernel Hilbert space; frames; Bessel sequences; Riesz basis; KADISON-SINGER PROBLEM; INTERPOLATION; FRAMES; OVERCOMPLETENESS; LOCALIZATION; MATHEMATICS; DENSITY;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove two new equivalences of the Feichtinger conjecture that involve reproducing kernel Hilbert spaces. We prove that if for every Hilbert space, contractively contained in the Hardy space, each Bessel sequence of normalized kernel functions can be partitioned into finitely many Riesz basic sequences, then a general bounded Bessel sequence in an arbitrary Hilbert space can be partitioned into finitely many Riesz basic sequences. In addition, we examine some of these spaces and prove that for these spaces bounded Bessel sequences of normalized kernel functions are finite unions of Riesz basic sequences.
引用
收藏
页码:1303 / 1317
页数:15
相关论文
共 50 条
  • [31] Metamorphosis of images in reproducing kernel Hilbert spaces
    Richardson, Casey L.
    Younes, Laurent
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2016, 42 (03) : 573 - 603
  • [32] Nonlinear expansions in reproducing kernel Hilbert spaces
    Mashreghi, Javad
    Verreault, William
    SAMPLING THEORY SIGNAL PROCESSING AND DATA ANALYSIS, 2023, 21 (02):
  • [33] Adaptive Estimation in Reproducing Kernel Hilbert Spaces
    Bobade, Parag
    Majumdar, Suprotim
    Pereira, Savio
    Kurdila, Andrew J.
    Ferris, John B.
    2017 AMERICAN CONTROL CONFERENCE (ACC), 2017, : 5678 - 5683
  • [34] Interpolation for multipliers on reproducing kernel Hilbert spaces
    Bolotnikov, V
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (05) : 1373 - 1383
  • [35] An algebra structure for reproducing kernel Hilbert spaces
    Montgomery, Michael
    Giannakis, Dimitrios
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2025, 19 (01)
  • [36] The Feichtinger Conjecture for Reproducing Kernels in Model Subspaces
    Baranov, Anton
    Dyakonov, Konstantin
    JOURNAL OF GEOMETRIC ANALYSIS, 2011, 21 (02) : 276 - 287
  • [37] The Feichtinger Conjecture for Reproducing Kernels in Model Subspaces
    Anton Baranov
    Konstantin Dyakonov
    Journal of Geometric Analysis, 2011, 21 : 276 - 287
  • [38] Reproducing kernel Hilbert spaces via sampling in discrete spaces
    Foroutan, Mohammadreza
    Asadi, Raheleh
    JOURNAL OF ANALYSIS, 2023, 31 (03): : 1805 - 1818
  • [39] Which Spaces can be Embedded in Reproducing Kernel Hilbert Spaces?
    Schoelpple, Max
    Steinwart, Ingo
    CONSTRUCTIVE APPROXIMATION, 2025,
  • [40] Reproducing kernel Hilbert spaces associated with kernels on topological spaces
    J. C. Ferreira
    V. A. Menegatto
    Functional Analysis and Its Applications, 2012, 46 : 152 - 154