Perfect Gaussian Integer Sequences Embedding Pre-Given Gaussian Integers

被引:2
|
作者
Zeng, Fanxin [1 ]
He, Xiping [1 ]
Xuan, Guixin [2 ,3 ]
Zhang, Zhenyu [3 ]
Peng, Yanni [1 ]
Yan, Li [1 ]
机构
[1] Chongqing Technol & Business Univ, Chongqing Engn Lab Detect Control & Integrated Sy, Chongqing 400067, Peoples R China
[2] Chongqing Univ, Coll Commun Engn, Chongqing 400044, Peoples R China
[3] Army Engn Univ PLA, Commun NCO Acad, Chongqing 400035, Peoples R China
基金
中国国家自然科学基金;
关键词
Pre-given Gaussian integers; autocorrelation functions; perfect Gaussian integer sequences;
D O I
10.1109/LSP.2019.2921228
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A pre-given Gaussian integer (CI) is a CI that is determined before a sequence is designed, and a sequence embedding a pre-given GI is a sequence that contains the GI as part of its components. In this letter, for an arbitrary pre-given GI, we present two constructions that produce perfect GI sequences (PGISs) embedding the pre-given GI with different embedment frequencies. Typically, for an arbitrary even integer N (N >= 4) and arbitrary pre-given GI c, one of our constructions can yield a PGIS of period N and degree 3 that embeds the pre-given GI c N-2 times. Our constructions provide a high degree of freedom and flexibility for PGIS designs to satisfy the requirements of sequence designs and applications.
引用
收藏
页码:1122 / 1126
页数:5
相关论文
共 50 条
  • [1] Arbitrary Length Reducible and Irreducible Perfect Gaussian Integer Sequences with A Pre-Given Gaussian Integer
    Pei, Soo-Chang
    Chang, Kuo-Wei
    28TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2020), 2021, : 2274 - 2278
  • [2] New constructions of perfect gaussian integer sequences
    Chen, Xiao-Yu
    Xu, Cheng-Qian
    Li, Yu-Bo
    Dianzi Yu Xinxi Xuebao/Journal of Electronics and Information Technology, 2014, 36 (09): : 2081 - 2085
  • [3] Construction of Nearly Perfect Gaussian Integer Sequences
    Li Yubo
    Chen Miao
    JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2018, 40 (07) : 1752 - 1758
  • [4] Perfect Gaussian Integer Sequences of Arbitrary Length
    Pei, Soo-Chang
    Chang, Kuo-Wei
    IEEE SIGNAL PROCESSING LETTERS, 2015, 22 (08) : 1040 - 1044
  • [5] Generation of Long Perfect Gaussian Integer Sequences
    Lee, Chong-Dao
    Hong, Shao-Hua
    IEEE SIGNAL PROCESSING LETTERS, 2017, 24 (04) : 515 - 519
  • [6] Nearly perfect Gaussian integer sequences with arbitrary degree
    Li, Yubo
    Tian, Liying
    Liu, Tao
    IET COMMUNICATIONS, 2018, 12 (09) : 1123 - 1127
  • [7] A CDMA scheme based on perfect Gaussian integer sequences
    Chang, Ho-Hsuan
    Lin, Shieh-Chiang
    Lee, Chong-Dao
    AEU-INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATIONS, 2017, 75 : 70 - 81
  • [8] New Perfect Gaussian Integer Sequences of Period pq
    Ma, Xiuwen
    Wen, Qiaoyan
    Zhang, Jie
    Zuo, Huijuan
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2013, E96A (11) : 2290 - 2293
  • [9] Perfect Gaussian Integer Sequences of Arbitrary Composite Length
    Chang, Ho-Hsuan
    Li, Chih-Peng
    Lee, Chong-Dao
    Wang, Sen-Hung
    Wu, Tsung-Cheng
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2015, 61 (07) : 4107 - 4115
  • [10] Perfect Gaussian Integer Sequences of Odd Prime Length
    Yang, Yang
    Tang, Xiaohu
    Zhou, Zhengchun
    IEEE SIGNAL PROCESSING LETTERS, 2012, 19 (10) : 615 - 618