Nearly perfect Gaussian integer sequences with arbitrary degree

被引:2
|
作者
Li, Yubo [1 ,2 ]
Tian, Liying [1 ,2 ]
Liu, Tao [1 ,2 ]
机构
[1] Yanshan Univ, Sch Informat Sci & Engn, Qinhuangdao 066004, Hebei, Peoples R China
[2] Hebei Key Lab Informat Transmiss & Signal Proc, Qinhuangdao 066004, Hebei, Peoples R China
关键词
random sequences; Gaussian processes; nearly perfect Gaussian integer sequences; arbitrary degree; p-ary pseudorandom sequences; degree-k Gaussian integer sequences; periodic autocorrelation value; odd prime; positive integers; LENGTH; CODES; PAPR;
D O I
10.1049/iet-com.2017.1274
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Based on p-ary pseudorandom sequences, this study proposes a construction of degree-k Gaussian integer sequences of period N=k(p<^>m-1)/(p-1) N=k(pm-1)/(p-1) by utilising kth power residue symbol satisfying k|(p-1)(p-1), where p is an odd prime and positive integers m,k . The periodic autocorrelation values are 0 at shifts (N/k)) of the resultant sequences. Specially, there is exactly one non-zero out-of-phase periodic autocorrelation value of the resultant sequences for k=2. The non-zero elements of the sequences are balanced and can be predefined flexibly. Moreover, the maximum energy efficiency of the proposed sequences is close to (p-1)/p (p-1)/p for sufficiently large m.
引用
收藏
页码:1123 / 1127
页数:5
相关论文
共 50 条
  • [1] Construction of Nearly Perfect Gaussian Integer Sequences
    Li Yubo
    Chen Miao
    JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2018, 40 (07) : 1752 - 1758
  • [2] Perfect Gaussian Integer Sequences of Arbitrary Length
    Pei, Soo-Chang
    Chang, Kuo-Wei
    IEEE SIGNAL PROCESSING LETTERS, 2015, 22 (08) : 1040 - 1044
  • [3] Perfect Gaussian Integer Sequences of Arbitrary Composite Length
    Chang, Ho-Hsuan
    Li, Chih-Peng
    Lee, Chong-Dao
    Wang, Sen-Hung
    Wu, Tsung-Cheng
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2015, 61 (07) : 4107 - 4115
  • [4] Arbitrary Length Reducible and Irreducible Perfect Gaussian Integer Sequences with A Pre-Given Gaussian Integer
    Pei, Soo-Chang
    Chang, Kuo-Wei
    28TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2020), 2021, : 2274 - 2278
  • [5] Further results on degree-2 perfect Gaussian integer sequences
    Lee, Chong-Dao
    Li, Chih-Peng
    Chang, Ho-Hsuan
    Wang, Sen-Hung
    IET COMMUNICATIONS, 2016, 10 (12) : 1542 - 1552
  • [6] Perfect Gaussian Integer Sequences of Degree-4 Using Difference Sets
    Peng, Xiuping
    Ren, Jiadong
    Xu, Chengqian
    Liu, Kai
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2016, E99A (12): : 2604 - 2608
  • [7] New constructions of perfect gaussian integer sequences
    Chen, Xiao-Yu
    Xu, Cheng-Qian
    Li, Yu-Bo
    Dianzi Yu Xinxi Xuebao/Journal of Electronics and Information Technology, 2014, 36 (09): : 2081 - 2085
  • [8] Generation of Long Perfect Gaussian Integer Sequences
    Lee, Chong-Dao
    Hong, Shao-Hua
    IEEE SIGNAL PROCESSING LETTERS, 2017, 24 (04) : 515 - 519
  • [9] Degree-(k+1) Perfect Gaussian Integer Sequences of Period pk
    Chang, Ho-Hsuan
    2017 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2017, : 1505 - 1509
  • [10] A CDMA scheme based on perfect Gaussian integer sequences
    Chang, Ho-Hsuan
    Lin, Shieh-Chiang
    Lee, Chong-Dao
    AEU-INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATIONS, 2017, 75 : 70 - 81