Nearly perfect Gaussian integer sequences with arbitrary degree

被引:2
|
作者
Li, Yubo [1 ,2 ]
Tian, Liying [1 ,2 ]
Liu, Tao [1 ,2 ]
机构
[1] Yanshan Univ, Sch Informat Sci & Engn, Qinhuangdao 066004, Hebei, Peoples R China
[2] Hebei Key Lab Informat Transmiss & Signal Proc, Qinhuangdao 066004, Hebei, Peoples R China
关键词
random sequences; Gaussian processes; nearly perfect Gaussian integer sequences; arbitrary degree; p-ary pseudorandom sequences; degree-k Gaussian integer sequences; periodic autocorrelation value; odd prime; positive integers; LENGTH; CODES; PAPR;
D O I
10.1049/iet-com.2017.1274
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Based on p-ary pseudorandom sequences, this study proposes a construction of degree-k Gaussian integer sequences of period N=k(p<^>m-1)/(p-1) N=k(pm-1)/(p-1) by utilising kth power residue symbol satisfying k|(p-1)(p-1), where p is an odd prime and positive integers m,k . The periodic autocorrelation values are 0 at shifts (N/k)) of the resultant sequences. Specially, there is exactly one non-zero out-of-phase periodic autocorrelation value of the resultant sequences for k=2. The non-zero elements of the sequences are balanced and can be predefined flexibly. Moreover, the maximum energy efficiency of the proposed sequences is close to (p-1)/p (p-1)/p for sufficiently large m.
引用
收藏
页码:1123 / 1127
页数:5
相关论文
共 50 条
  • [41] Constructions of Gaussian Integer Periodic Complementary Sequences with ZCZ
    Kong, Deming
    Chen, Xiaoyu
    Li, Yubo
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2017, E100A (09): : 2056 - 2060
  • [42] Gaussian Integer Sequences with Ideal Periodic Autocorrelation Functions
    Hu, Wei-Wen
    Wang, Sen-Hung
    Li, Chih-Peng
    2011 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2011,
  • [43] Gaussian Integer Sequences With Ideal Periodic Autocorrelation Functions
    Hu, Wei-Wen
    Wang, Sen-Hung
    Li, Chih-Peng
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2012, 60 (11) : 6074 - 6079
  • [44] Families of Gaussian integer sequences with high energy efficiency
    Lee, Chong-Dao
    Chen, Yan-Haw
    IET COMMUNICATIONS, 2016, 10 (17) : 2416 - 2421
  • [45] Constructions of Gaussian Integer Sequences with Zero Correlation Zone
    Chen, Xiaoyu
    Kong, Deming
    Xu, Chengqian
    Liu, Kai
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2016, E99A (06): : 1260 - 1263
  • [46] Domination ratio of a family of integer distance digraphs with arbitrary degree
    Huang, Jia
    DISCRETE APPLIED MATHEMATICS, 2022, 317 : 1 - 9
  • [48] Perfect Gaussian Integer Sequence Pairs from Cyclic Difference Set Pairs
    Lin, Hongbin
    Peng, Xiuping
    Feng, Chao
    Tong, Qisheng
    Liu, Kai
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2018, E101A (05) : 855 - 858
  • [49] Constructions of Gaussian Integer Periodic Complementary Sequences Based on Difference Families
    Liu Tao
    Xu Chengqian
    Li Yubo
    JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2019, 41 (05) : 1167 - 1172
  • [50] ON THE NONEXISTENCE OF PERFECT AND NEARLY PERFECT CODES
    HAMMOND, P
    DISCRETE MATHEMATICS, 1982, 39 (01) : 105 - 109