Nearly perfect Gaussian integer sequences with arbitrary degree

被引:2
|
作者
Li, Yubo [1 ,2 ]
Tian, Liying [1 ,2 ]
Liu, Tao [1 ,2 ]
机构
[1] Yanshan Univ, Sch Informat Sci & Engn, Qinhuangdao 066004, Hebei, Peoples R China
[2] Hebei Key Lab Informat Transmiss & Signal Proc, Qinhuangdao 066004, Hebei, Peoples R China
关键词
random sequences; Gaussian processes; nearly perfect Gaussian integer sequences; arbitrary degree; p-ary pseudorandom sequences; degree-k Gaussian integer sequences; periodic autocorrelation value; odd prime; positive integers; LENGTH; CODES; PAPR;
D O I
10.1049/iet-com.2017.1274
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Based on p-ary pseudorandom sequences, this study proposes a construction of degree-k Gaussian integer sequences of period N=k(p<^>m-1)/(p-1) N=k(pm-1)/(p-1) by utilising kth power residue symbol satisfying k|(p-1)(p-1), where p is an odd prime and positive integers m,k . The periodic autocorrelation values are 0 at shifts (N/k)) of the resultant sequences. Specially, there is exactly one non-zero out-of-phase periodic autocorrelation value of the resultant sequences for k=2. The non-zero elements of the sequences are balanced and can be predefined flexibly. Moreover, the maximum energy efficiency of the proposed sequences is close to (p-1)/p (p-1)/p for sufficiently large m.
引用
收藏
页码:1123 / 1127
页数:5
相关论文
共 50 条
  • [21] Perfect Gaussian Integer Sequences From Monomial o-Polynomials
    Wang, Jeng-Jung
    Lee, Chong-Dao
    Chang, Yaotsu
    2017 IEEE 18TH INTERNATIONAL WORKSHOP ON SIGNAL PROCESSING ADVANCES IN WIRELESS COMMUNICATIONS (SPAWC), 2017,
  • [22] New Constructions of Even-Length Perfect Gaussian Integer Sequences
    Lee, Chong-Dao
    Lee, Kun-Lin
    2024 9TH INTERNATIONAL CONFERENCE ON SIGNAL AND IMAGE PROCESSING, ICSIP, 2024, : 241 - 245
  • [23] Construction of Perfect Gaussian Integer Sequences Based on Cyclic Difference Sets
    Liu K.
    Ni J.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2021, 49 (08): : 1474 - 1479
  • [24] New Perfect Gaussian Integer Sequences from Cyclic Difference Sets
    Liu, Tao
    Xu, Chengqian
    Li, Yubo
    Liu, Kai
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2017, E100A (12) : 3067 - 3070
  • [25] Arbitrary Length Perfect Integer Sequences Using All-Pass Polynomial
    Pei, Soo-Chang
    Chang, Kuo-Wei
    IEEE SIGNAL PROCESSING LETTERS, 2019, 26 (08) : 1112 - 1116
  • [26] Nonbinary Sequences with Perfect and Nearly Perfect Autocorrelations
    Boztas, Serdar
    Parampalli, Udaya
    2010 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, 2010, : 1300 - 1304
  • [27] Novel Comb Spectrum CDMA System Using Perfect Gaussian Integer Sequences
    Wang, Sen-Hung
    Li, Chih-Peng
    2015 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2015,
  • [28] Perfect Gaussian Integer Sequences of Odd Period 2m-1
    Lee, Chong-Dao
    Huang, Yu-Pei
    Chang, Yaotsu
    Chang, Ho-Hsuan
    IEEE SIGNAL PROCESSING LETTERS, 2015, 22 (07) : 881 - 885
  • [29] Construction of Perfect Gaussian Integer Sequences From Payne's o-Polynomial
    Lee, Chong-Dao
    2017 IEEE INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING, COMMUNICATIONS AND COMPUTING (ICSPCC), 2017,
  • [30] Perfect Gaussian Integer Sequence Pairs
    Xu, Chengqian
    Peng, Xiuping
    Liu, Kai
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2014, E97A (07) : 1568 - 1575