Perfect Gaussian Integer Sequences Embedding Pre-Given Gaussian Integers

被引:2
|
作者
Zeng, Fanxin [1 ]
He, Xiping [1 ]
Xuan, Guixin [2 ,3 ]
Zhang, Zhenyu [3 ]
Peng, Yanni [1 ]
Yan, Li [1 ]
机构
[1] Chongqing Technol & Business Univ, Chongqing Engn Lab Detect Control & Integrated Sy, Chongqing 400067, Peoples R China
[2] Chongqing Univ, Coll Commun Engn, Chongqing 400044, Peoples R China
[3] Army Engn Univ PLA, Commun NCO Acad, Chongqing 400035, Peoples R China
基金
中国国家自然科学基金;
关键词
Pre-given Gaussian integers; autocorrelation functions; perfect Gaussian integer sequences;
D O I
10.1109/LSP.2019.2921228
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A pre-given Gaussian integer (CI) is a CI that is determined before a sequence is designed, and a sequence embedding a pre-given GI is a sequence that contains the GI as part of its components. In this letter, for an arbitrary pre-given GI, we present two constructions that produce perfect GI sequences (PGISs) embedding the pre-given GI with different embedment frequencies. Typically, for an arbitrary even integer N (N >= 4) and arbitrary pre-given GI c, one of our constructions can yield a PGIS of period N and degree 3 that embeds the pre-given GI c N-2 times. Our constructions provide a high degree of freedom and flexibility for PGIS designs to satisfy the requirements of sequence designs and applications.
引用
收藏
页码:1122 / 1126
页数:5
相关论文
共 50 条
  • [41] Novel MC-CDMA System Using Fourier Duals of Sparse Perfect Gaussian Integer Sequences
    Wang, Sen-Hung
    Li, Chih-Peng
    2016 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2016,
  • [42] Constructions of Gaussian Integer Periodic Complementary Sequences with ZCZ
    Kong, Deming
    Chen, Xiaoyu
    Li, Yubo
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2017, E100A (09): : 2056 - 2060
  • [43] Gaussian Integer Sequences with Ideal Periodic Autocorrelation Functions
    Hu, Wei-Wen
    Wang, Sen-Hung
    Li, Chih-Peng
    2011 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2011,
  • [44] Gaussian Integer Sequences With Ideal Periodic Autocorrelation Functions
    Hu, Wei-Wen
    Wang, Sen-Hung
    Li, Chih-Peng
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2012, 60 (11) : 6074 - 6079
  • [45] Families of Gaussian integer sequences with high energy efficiency
    Lee, Chong-Dao
    Chen, Yan-Haw
    IET COMMUNICATIONS, 2016, 10 (17) : 2416 - 2421
  • [46] Constructions of Gaussian Integer Sequences with Zero Correlation Zone
    Chen, Xiaoyu
    Kong, Deming
    Xu, Chengqian
    Liu, Kai
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2016, E99A (06): : 1260 - 1263
  • [47] Steganography from perfect codes on Cayley graphs over Gaussian integers, Eisenstein–Jacobi integers and Lipschitz integers
    Jon-Lark Kim
    JunYong Park
    Designs, Codes and Cryptography, 2022, 90 : 2967 - 2989
  • [48] Steganography from perfect codes on Cayley graphs over Gaussian integers, Eisenstein-Jacobi integers and Lipschitz integers
    Kim, Jon-Lark
    Park, JunYong
    DESIGNS CODES AND CRYPTOGRAPHY, 2022, 90 (12) : 2967 - 2989
  • [49] Constructions of Gaussian Integer Periodic Complementary Sequences Based on Difference Families
    Liu Tao
    Xu Chengqian
    Li Yubo
    JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2019, 41 (05) : 1167 - 1172
  • [50] Perfect Gaussian Integer Sequence Pairs from Cyclic Difference Set Pairs
    Lin, Hongbin
    Peng, Xiuping
    Feng, Chao
    Tong, Qisheng
    Liu, Kai
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2018, E101A (05) : 855 - 858