Perfect Gaussian Integer Sequences Embedding Pre-Given Gaussian Integers

被引:2
|
作者
Zeng, Fanxin [1 ]
He, Xiping [1 ]
Xuan, Guixin [2 ,3 ]
Zhang, Zhenyu [3 ]
Peng, Yanni [1 ]
Yan, Li [1 ]
机构
[1] Chongqing Technol & Business Univ, Chongqing Engn Lab Detect Control & Integrated Sy, Chongqing 400067, Peoples R China
[2] Chongqing Univ, Coll Commun Engn, Chongqing 400044, Peoples R China
[3] Army Engn Univ PLA, Commun NCO Acad, Chongqing 400035, Peoples R China
基金
中国国家自然科学基金;
关键词
Pre-given Gaussian integers; autocorrelation functions; perfect Gaussian integer sequences;
D O I
10.1109/LSP.2019.2921228
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A pre-given Gaussian integer (CI) is a CI that is determined before a sequence is designed, and a sequence embedding a pre-given GI is a sequence that contains the GI as part of its components. In this letter, for an arbitrary pre-given GI, we present two constructions that produce perfect GI sequences (PGISs) embedding the pre-given GI with different embedment frequencies. Typically, for an arbitrary even integer N (N >= 4) and arbitrary pre-given GI c, one of our constructions can yield a PGIS of period N and degree 3 that embeds the pre-given GI c N-2 times. Our constructions provide a high degree of freedom and flexibility for PGIS designs to satisfy the requirements of sequence designs and applications.
引用
收藏
页码:1122 / 1126
页数:5
相关论文
共 50 条
  • [21] Computational Search for Gaussian Perfect Integers
    Banerjee, Ashmi
    Mukherjee, Shaunak
    Datta, Somjit
    Majumder, Subhashis
    2015 INTERNATIONAL CONFERENCE ON CONTROL COMMUNICATION & COMPUTING INDIA (ICCC), 2015, : 710 - 715
  • [22] Perfect Gaussian Integer Sequences From Monomial o-Polynomials
    Wang, Jeng-Jung
    Lee, Chong-Dao
    Chang, Yaotsu
    2017 IEEE 18TH INTERNATIONAL WORKSHOP ON SIGNAL PROCESSING ADVANCES IN WIRELESS COMMUNICATIONS (SPAWC), 2017,
  • [23] New Constructions of Even-Length Perfect Gaussian Integer Sequences
    Lee, Chong-Dao
    Lee, Kun-Lin
    2024 9TH INTERNATIONAL CONFERENCE ON SIGNAL AND IMAGE PROCESSING, ICSIP, 2024, : 241 - 245
  • [24] Construction of Perfect Gaussian Integer Sequences Based on Cyclic Difference Sets
    Liu K.
    Ni J.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2021, 49 (08): : 1474 - 1479
  • [25] New Perfect Gaussian Integer Sequences from Cyclic Difference Sets
    Liu, Tao
    Xu, Chengqian
    Li, Yubo
    Liu, Kai
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2017, E100A (12) : 3067 - 3070
  • [26] Further results on degree-2 perfect Gaussian integer sequences
    Lee, Chong-Dao
    Li, Chih-Peng
    Chang, Ho-Hsuan
    Wang, Sen-Hung
    IET COMMUNICATIONS, 2016, 10 (12) : 1542 - 1552
  • [27] Perfect Gaussian Integer Sequence Pairs
    Xu, Chengqian
    Peng, Xiuping
    Liu, Kai
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2014, E97A (07) : 1568 - 1575
  • [28] Perfect Gaussian Integer Sequences of Degree-4 Using Difference Sets
    Peng, Xiuping
    Ren, Jiadong
    Xu, Chengqian
    Liu, Kai
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2016, E99A (12): : 2604 - 2608
  • [29] Novel Comb Spectrum CDMA System Using Perfect Gaussian Integer Sequences
    Wang, Sen-Hung
    Li, Chih-Peng
    2015 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2015,
  • [30] Perfect Gaussian Integer Sequences of Odd Period 2m-1
    Lee, Chong-Dao
    Huang, Yu-Pei
    Chang, Yaotsu
    Chang, Ho-Hsuan
    IEEE SIGNAL PROCESSING LETTERS, 2015, 22 (07) : 881 - 885