Potential theory for quantum Markov states and other quantum Markov chains

被引:2
|
作者
Dhahri, Ameur [1 ]
Fagnola, Franco [1 ]
机构
[1] Politecn Milan, Dipartimento Matemat, Piazza Leonardo Vinci 32, I-20133 Milan, Italy
关键词
Quantum Markov chains; Potential; Recurrence; Transience;
D O I
10.1007/s13324-023-00790-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a potential theory for a class of Quantum Markov Chains whose forward and backward Markov transition operators satisfy a special composition rule. We study the associated recurrence, transient and irreducibility properties and we prove that an irreducible quantum Markov chain is either recurrent or transient. Moreover, we show that our theory applies in many cases such as: quantum random walks, diagonal states, entangled Quantum Markov Chains. A characterization of Entangled Quantum Markov Chains is also given.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] Asymptotic properties of quantum Markov chains
    Novotny, J.
    Alber, G.
    Jex, I.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (48)
  • [22] Remarks on quantum Markov states
    Bezhaeva, Z. I.
    Oseledets, V. I.
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2015, 49 (03) : 205 - 209
  • [23] THE ENTROPY OF QUANTUM MARKOV STATES
    BESSON, O
    LECTURE NOTES IN MATHEMATICS, 1985, 1136 : 81 - 89
  • [24] Remarks on quantum Markov states
    Z. I. Bezhaeva
    V. I. Oseledets
    Functional Analysis and Its Applications, 2015, 49 : 205 - 209
  • [25] PRINCIPLES OF POTENTIAL THEORY AND MARKOV CHAINS
    SHPARO, DI
    THEORY OF PROBILITY AND ITS APPLICATIONS,USSR, 1966, 11 (03): : 415 - &
  • [26] Quantum Markov Chains Associated with Open Quantum Random Walks
    Ameur Dhahri
    Chul Ki Ko
    Hyun Jae Yoo
    Journal of Statistical Physics, 2019, 176 : 1272 - 1295
  • [27] Quantum Markov Chains Associated with Open Quantum Random Walks
    Dhahri, Ameur
    Ko, Chul Ki
    Yoo, Hyun Jae
    JOURNAL OF STATISTICAL PHYSICS, 2019, 176 (05) : 1272 - 1295
  • [28] Open quantum random walks, quantum Markov chains and recurrence
    Dhahri, Ameur
    Mukhamedov, Farrukh
    REVIEWS IN MATHEMATICAL PHYSICS, 2019, 31 (07)
  • [29] Mean mutual entropy in quantum Markov chains
    Suyari, H
    ELECTRONICS AND COMMUNICATIONS IN JAPAN PART III-FUNDAMENTAL ELECTRONIC SCIENCE, 1997, 80 (01): : 104 - 112
  • [30] Complete Entropic Inequalities for Quantum Markov Chains
    Li Gao
    Cambyse Rouzé
    Archive for Rational Mechanics and Analysis, 2022, 245 : 183 - 238