Potential theory for quantum Markov states and other quantum Markov chains

被引:2
|
作者
Dhahri, Ameur [1 ]
Fagnola, Franco [1 ]
机构
[1] Politecn Milan, Dipartimento Matemat, Piazza Leonardo Vinci 32, I-20133 Milan, Italy
关键词
Quantum Markov chains; Potential; Recurrence; Transience;
D O I
10.1007/s13324-023-00790-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a potential theory for a class of Quantum Markov Chains whose forward and backward Markov transition operators satisfy a special composition rule. We study the associated recurrence, transient and irreducibility properties and we prove that an irreducible quantum Markov chain is either recurrent or transient. Moreover, we show that our theory applies in many cases such as: quantum random walks, diagonal states, entangled Quantum Markov Chains. A characterization of Entangled Quantum Markov Chains is also given.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] Reachability Analysis of Recursive Quantum Markov Chains
    Feng, Yuan
    Yu, Nengkun
    Ying, Mingsheng
    MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 2013, 2013, 8087 : 385 - 396
  • [32] Transition Effect Matrices and Quantum Markov Chains
    Gudder, Stan
    FOUNDATIONS OF PHYSICS, 2009, 39 (06) : 573 - 592
  • [33] Tree-Homogeneous Quantum Markov Chains
    Souissi, Abdessatar
    Mukhamedov, Farrukh
    Barhoumi, Abdessatar
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2023, 62 (02)
  • [34] Recurrence of a class of quantum Markov chains on trees
    Barhoumi, Abdessatar
    Souissi, Abdessatar
    CHAOS SOLITONS & FRACTALS, 2022, 164
  • [35] Measuring the constrained reachability in quantum Markov chains
    Xu, Ming
    Huang, Cheng-Chao
    Feng, Yuan
    ACTA INFORMATICA, 2021, 58 (06) : 653 - 674
  • [36] Recurrence and Transience within Quantum Markov Chains
    Mukhamedov, Farrukh
    37TH INTERNATIONAL CONFERENCE ON QUANTUM PROBABILITY AND RELATED TOPICS (QP37), 2017, 819
  • [37] Complete Entropic Inequalities for Quantum Markov Chains
    Gao, Li
    Rouze, Cambyse
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2022, 245 (01) : 183 - 238
  • [38] Quantum mixing of Markov chains for special distributions
    Dunjko, V.
    Briegel, H. J.
    NEW JOURNAL OF PHYSICS, 2015, 17
  • [39] Analog quantum algorithms for the mixing of Markov chains
    Chakraborty, Shantanav
    Luh, Kyle
    Roland, Jeremie
    PHYSICAL REVIEW A, 2020, 102 (02)
  • [40] Decomposition of quantum Markov chains and its applications
    Guan, Ji
    Feng, Yuan
    Ying, Mingsheng
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2018, 95 : 55 - 68