Artificial Intelligence-Assisted Classification of Gliomas Using Whole Slide Images

被引:11
|
作者
Jose, Laya [1 ,5 ]
Liu, Sidong [1 ,3 ]
Russo, Carlo [1 ]
Cong, Cong [4 ]
Song, Yang [4 ]
Rodriguez, Michael [2 ]
Di Ieva, Antonio [1 ]
机构
[1] Macquarie Univ, Computat Neurosurg Lab, Sydney, Australia
[2] Macquarie Univ, Macquarie Med Sch, Sydney, Australia
[3] Macquarie Univ, Australian Inst Hlth Innovat, Ctr Hlth Informat, Sydney, Australia
[4] Univ New South Wales, Sch Comp Sci & Engn, Sydney, Australia
[5] Macquarie Univ, Macquarie Med Sch, Computat NeuroSurg Lab, 1st Floor 75 Talavera Rd, Sydney, NSW 2109, Australia
关键词
CENTRAL-NERVOUS-SYSTEM; TUMORS;
D O I
10.5858/arpa.2021-0518-OA
中图分类号
R446 [实验室诊断]; R-33 [实验医学、医学实验];
学科分类号
1001 ;
摘要
& BULL; Context.-Glioma is the most common primary brain tumor in adults. The diagnosis and grading of different pathological subtypes of glioma is essential in treatment planning and prognosis. Objective.-To propose a deep learning-based approach for the automated classification of glioma histopathology images. Two classification methods, the ensemble method based on 2 binary classifiers and the multiclass method using a single multiclass classifier, were implemented to classify glioma images into astrocytoma, oligodendroglioma, and glioblastoma, according to the 5th edition of the World Health Organization classification of central nervous system tumors, published in 2021. Design.-We tested 2 different deep neural network architectures (VGG19 and ResNet50) and extensively validated the proposed approach based on The Cancer Genome Atlas data set (n = 700). We also studied the effects of stain normalization and data augmentation on the glioma classification task. Results.-With the binary classifiers, our model could distinguish astrocytoma and oligodendroglioma (com- bined) from glioblastoma with an accuracy of 0.917 (area under the curve [AUC] = 0.976) and astrocytoma from oligodendroglioma (accuracy = 0.821, AUC = 0.865). The multiclass method (accuracy = 0.861, AUC = 0.961) outperformed the ensemble method (accuracy = 0.847, AUC = 0.933) with the best performance displayed by the ResNet50 architecture. Conclusions.-With the high performance of our model (.80%), the proposed method can assist pathologists and physicians to support examination and differential diagno- sis of glioma histopathology images, with the aim to expedite personalized medical care. (Arch Pathol Lab Med. 2023;147:916-924; doi: 10.5858/ arpa.2021-0518-OA)
引用
收藏
页码:916 / 924
页数:9
相关论文
共 50 条
  • [1] ARTIFICIAL INTELLIGENCE-ASSISTED PREDICTION OF LYMPH NODE METASTASIS IN COLORECTAL CANCER USING WHOLE PATHOLOGICAL SLIDE IMAGES
    Takashina, Yuki
    Kudo, Shinei
    Miyachi, Hideyuki
    Ichimasa, Katsuro
    Kouyama, Yuta
    Ogawa, Yushi
    Mori, Yuichi
    Maeda, Yasuharu
    Kudo, Toyoki
    Shimada, Shoji
    Nakahara, Kenta
    Takehara, Yusuke
    Mukai, Shunpei
    Hayashi, Takemasa
    Wakamura, Kunihiko
    Enami, Yuta
    Sawada, Naruhiko
    Baba, Toshiyuki
    Nemoto, Tetsuo
    Ishida, Fumio
    Misawa, Masashi
    GASTROINTESTINAL ENDOSCOPY, 2022, 95 (06) : AB179 - AB180
  • [2] Artificial intelligence-assisted quantification and assessment of whole slide images for pediatric kidney disease diagnosis
    Feng, Chunyue
    Ong, Kokhaur
    Young, David M.
    Chen, Bingxian
    Li, Longjie
    Huo, Xinmi
    Lu, Haoda
    Gu, Weizhong
    Liu, Fei
    Tang, Hongfeng
    Zhao, Manli
    Yang, Min
    Zhu, Kun
    Huang, Limin
    Wang, Qiang
    Marini, Gabriel Pik Liang
    Gui, Kun
    Han, Hao
    Sanders, Stephan J.
    Li, Lin
    Yu, Weimiao
    Mao, Jianhua
    BIOINFORMATICS, 2024, 40 (01)
  • [3] ARTIFICIAL INTELLIGENCE-ASSISTED JAUNDICE DETECTION BY SMARTPHONE IMAGES
    Su, Tung-Hung
    Li, Jia-Wei
    Shu, Po-Yeh
    Lee, Ming-Sui
    Kao, Jia-Horng
    Chou, Cheng-Fu
    HEPATOLOGY, 2022, 76 : S1078 - S1078
  • [4] ARTIFICIAL INTELLIGENCE-ASSISTED CLASSIFICATION OF AORTIC STENOSIS SEVERITY
    Arnold, Joshua H.
    Desai, Kevin V.
    Slostad, Brody
    Bhayani, Siddharth
    Ouwerkerk, Wouter
    Hummel, Yoran M.
    Lam, Carolyn S. P.
    Ezekowitz, Justin A.
    Frost, Matthew
    Jiang, Zhubo
    Equilbec, Cyril
    Twing, Aamir
    Pellikka, Patricia A.
    Frazin, Leon J.
    Kansal, Mayank Mohan
    Krishna, Hema
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2024, 83 (13) : 2450 - 2450
  • [5] Artificial intelligence-assisted cervical dysplasia detection using papanicolaou smear images
    Mulmule, Pallavi V.
    Kanphade, Rajendra D.
    Dhane, Dhiraj M.
    VISUAL COMPUTER, 2023, 39 (06): : 2381 - 2392
  • [6] Artificial intelligence-assisted cervical dysplasia detection using papanicolaou smear images
    Pallavi V. Mulmule
    Rajendra D. Kanphade
    Dhiraj M. Dhane
    The Visual Computer, 2023, 39 (6) : 2381 - 2392
  • [7] Artificial intelligence-assisted criminality
    Ugurlu, Bekir
    Falk, Julia
    MKG-CHIRURGIE, 2025, 18 (01): : 58 - 60
  • [8] Identification of Preeclamptic Placenta in Whole Slide Images Using Artificial Intelligence Placenta Analysis
    Jung, Young Mi
    Park, Seyeon
    Ahn, Youngbin
    Kim, Haeryoung
    Kim, Eun Na
    Park, Hye Eun
    Kim, Sun Min
    Kim, Byoung Jae
    Lee, Jeesun
    Park, Chan-Wook
    Park, Joong Shin
    Jun, Jong Kwan
    Kim, Young-Gon
    Lee, Seung Mi
    JOURNAL OF KOREAN MEDICAL SCIENCE, 2024, 39 (39)
  • [9] Detection of malignancy in whole slide images of endometrial cancer biopsies using artificial intelligence
    Fell, Christina
    Mohammadi, Mahnaz
    Morrison, David
    Arandjelovic, Ognjen
    Syed, Sheeba
    Konanahalli, Prakash
    Bell, Sarah
    Bryson, Gareth
    Harrison, David J.
    Harris-Birtill, David
    PLOS ONE, 2023, 18 (03):
  • [10] A survey of artificial intelligence-assisted analysis of breast ultrasound images classification: Research progress and future directions
    Wu, Ying
    Li, Faming
    Xu, Bo
    Tan, Cuier
    Huang, Hao
    2024 2ND ASIA CONFERENCE ON COMPUTER VISION, IMAGE PROCESSING AND PATTERN RECOGNITION, CVIPPR 2024, 2024,