Artificial Intelligence-Assisted Classification of Gliomas Using Whole Slide Images

被引:11
|
作者
Jose, Laya [1 ,5 ]
Liu, Sidong [1 ,3 ]
Russo, Carlo [1 ]
Cong, Cong [4 ]
Song, Yang [4 ]
Rodriguez, Michael [2 ]
Di Ieva, Antonio [1 ]
机构
[1] Macquarie Univ, Computat Neurosurg Lab, Sydney, Australia
[2] Macquarie Univ, Macquarie Med Sch, Sydney, Australia
[3] Macquarie Univ, Australian Inst Hlth Innovat, Ctr Hlth Informat, Sydney, Australia
[4] Univ New South Wales, Sch Comp Sci & Engn, Sydney, Australia
[5] Macquarie Univ, Macquarie Med Sch, Computat NeuroSurg Lab, 1st Floor 75 Talavera Rd, Sydney, NSW 2109, Australia
关键词
CENTRAL-NERVOUS-SYSTEM; TUMORS;
D O I
10.5858/arpa.2021-0518-OA
中图分类号
R446 [实验室诊断]; R-33 [实验医学、医学实验];
学科分类号
1001 ;
摘要
& BULL; Context.-Glioma is the most common primary brain tumor in adults. The diagnosis and grading of different pathological subtypes of glioma is essential in treatment planning and prognosis. Objective.-To propose a deep learning-based approach for the automated classification of glioma histopathology images. Two classification methods, the ensemble method based on 2 binary classifiers and the multiclass method using a single multiclass classifier, were implemented to classify glioma images into astrocytoma, oligodendroglioma, and glioblastoma, according to the 5th edition of the World Health Organization classification of central nervous system tumors, published in 2021. Design.-We tested 2 different deep neural network architectures (VGG19 and ResNet50) and extensively validated the proposed approach based on The Cancer Genome Atlas data set (n = 700). We also studied the effects of stain normalization and data augmentation on the glioma classification task. Results.-With the binary classifiers, our model could distinguish astrocytoma and oligodendroglioma (com- bined) from glioblastoma with an accuracy of 0.917 (area under the curve [AUC] = 0.976) and astrocytoma from oligodendroglioma (accuracy = 0.821, AUC = 0.865). The multiclass method (accuracy = 0.861, AUC = 0.961) outperformed the ensemble method (accuracy = 0.847, AUC = 0.933) with the best performance displayed by the ResNet50 architecture. Conclusions.-With the high performance of our model (.80%), the proposed method can assist pathologists and physicians to support examination and differential diagno- sis of glioma histopathology images, with the aim to expedite personalized medical care. (Arch Pathol Lab Med. 2023;147:916-924; doi: 10.5858/ arpa.2021-0518-OA)
引用
收藏
页码:916 / 924
页数:9
相关论文
共 50 条
  • [31] Detecting Specimen Contamination in Whole Slide Imaging Using Artificial Intelligence
    Babaie, Morteza
    Riasatian, Abtin
    Hemati, Sobhan
    Sajadi, Mahjabin
    Batten, Adrian
    Sikdar, Soma
    Pantanowitz, Liron
    Tizhoosh, Hamid
    LABORATORY INVESTIGATION, 2020, 100 (SUPPL 1) : 1438 - 1438
  • [32] Artificial Intelligence to predict BRAF mutational status from whole slide images in melanoma
    Bossard, C.
    Salhi, Y.
    Chetritt, J.
    Salhi, S.
    ANNALS OF ONCOLOGY, 2024, 35 : S739 - S739
  • [33] Development of pathological reconstructed high-resolution images using artificial intelligence based on whole slide image
    Deng, Yang
    Feng, Min
    Jiang, Yong
    Zhou, Yanyan
    Qin, Hangyu
    Xiang, Fei
    Wang, Yizhe
    Bu, Hong
    Bao, Ji
    MEDCOMM, 2020, 1 (03): : 410 - 417
  • [34] Identification of metastatic primary cutaneous squamous cell carcinoma using artificial intelligence analysis of whole slide images
    Knuutila, J. S.
    Riihila, P.
    Karlsson, A.
    Tukiainen, M.
    Talve, L.
    Nissinen, L.
    Kahari, V.
    JOURNAL OF INVESTIGATIVE DERMATOLOGY, 2021, 141 (10) : S194 - S194
  • [35] Artificial intelligence-assisted writing: a continuously evolving issue
    Park, Jaegyun
    SCIENCE EDITING, 2023, 10 (02): : 115 - 118
  • [36] Artificial Intelligence-Assisted Multimode Microrobot Swarm Behaviors
    Xia, Xuanjie
    Ni, Miao
    Wang, Mengchen
    Wang, Bin
    Liu, Dong
    Lu, Yuan
    ACS NANO, 2025, 19 (13) : 12883 - 12894
  • [37] Artificial Intelligence-Assisted Gastroenterology-Promises and Pitfalls
    Ruffle, James K.
    Farmer, Adam D.
    Aziz, Qasim
    AMERICAN JOURNAL OF GASTROENTEROLOGY, 2019, 114 (03): : 422 - 428
  • [38] Artificial intelligence-assisted macrophage identification in tumor biopsies
    Weigel, Kelsey
    Paces, Will
    Ergon, Elliott
    Caldara, Jeni
    McFadden, Kile
    Luengo, Cris
    Gianani, Roberto
    Vennapusa, Bharathi
    CANCER RESEARCH, 2019, 79 (13)
  • [39] Ethics of artificial intelligence-assisted image interpretation in dermatopathology
    Smith, Hayden
    Blalock, Travis
    Stoff, Benjamin K.
    JAAD INTERNATIONAL, 2025, 19 : 56 - 57
  • [40] Artificial Intelligence-Assisted Peer Review in Radiation Oncology
    Cattell, R.
    Ashamalla, M.
    Kim, J.
    Zabrocka, E.
    Qian, X.
    O'Grady, B.
    Butler, S.
    Yoder, T.
    Mani, K. M.
    Ryu, S.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2022, 114 (03): : E471 - E471