Artificial Intelligence-Assisted Classification of Gliomas Using Whole Slide Images

被引:11
|
作者
Jose, Laya [1 ,5 ]
Liu, Sidong [1 ,3 ]
Russo, Carlo [1 ]
Cong, Cong [4 ]
Song, Yang [4 ]
Rodriguez, Michael [2 ]
Di Ieva, Antonio [1 ]
机构
[1] Macquarie Univ, Computat Neurosurg Lab, Sydney, Australia
[2] Macquarie Univ, Macquarie Med Sch, Sydney, Australia
[3] Macquarie Univ, Australian Inst Hlth Innovat, Ctr Hlth Informat, Sydney, Australia
[4] Univ New South Wales, Sch Comp Sci & Engn, Sydney, Australia
[5] Macquarie Univ, Macquarie Med Sch, Computat NeuroSurg Lab, 1st Floor 75 Talavera Rd, Sydney, NSW 2109, Australia
关键词
CENTRAL-NERVOUS-SYSTEM; TUMORS;
D O I
10.5858/arpa.2021-0518-OA
中图分类号
R446 [实验室诊断]; R-33 [实验医学、医学实验];
学科分类号
1001 ;
摘要
& BULL; Context.-Glioma is the most common primary brain tumor in adults. The diagnosis and grading of different pathological subtypes of glioma is essential in treatment planning and prognosis. Objective.-To propose a deep learning-based approach for the automated classification of glioma histopathology images. Two classification methods, the ensemble method based on 2 binary classifiers and the multiclass method using a single multiclass classifier, were implemented to classify glioma images into astrocytoma, oligodendroglioma, and glioblastoma, according to the 5th edition of the World Health Organization classification of central nervous system tumors, published in 2021. Design.-We tested 2 different deep neural network architectures (VGG19 and ResNet50) and extensively validated the proposed approach based on The Cancer Genome Atlas data set (n = 700). We also studied the effects of stain normalization and data augmentation on the glioma classification task. Results.-With the binary classifiers, our model could distinguish astrocytoma and oligodendroglioma (com- bined) from glioblastoma with an accuracy of 0.917 (area under the curve [AUC] = 0.976) and astrocytoma from oligodendroglioma (accuracy = 0.821, AUC = 0.865). The multiclass method (accuracy = 0.861, AUC = 0.961) outperformed the ensemble method (accuracy = 0.847, AUC = 0.933) with the best performance displayed by the ResNet50 architecture. Conclusions.-With the high performance of our model (.80%), the proposed method can assist pathologists and physicians to support examination and differential diagno- sis of glioma histopathology images, with the aim to expedite personalized medical care. (Arch Pathol Lab Med. 2023;147:916-924; doi: 10.5858/ arpa.2021-0518-OA)
引用
收藏
页码:916 / 924
页数:9
相关论文
共 50 条
  • [21] Artificial Intelligence-Assisted Colonoscopy for Polyp Detection
    Soleymanjahi, Saeed
    Huebner, Jack
    Elmansy, Lina
    Rajashekar, Niroop
    Ludtke, Nando
    Paracha, Rumzah
    Thompson, Rachel
    Grimshaw, Alyssa A.
    Foroutan, Farid
    Sultan, Shahnaz
    Shung, Dennis L.
    ANNALS OF INTERNAL MEDICINE, 2024,
  • [22] Handwriting identification and verification using artificial intelligence-assisted textural features
    Zhao, Heng
    Li, Huihui
    SCIENTIFIC REPORTS, 2023, 13 (01):
  • [23] Artificial Intelligence-Assisted Surgery: Potential and Challenges
    Bodenstedt, Sebastian
    Wagner, Martin
    Mueller-Stich, Beat Peter
    Weitz, Juergen
    Speidel, Stefanie
    VISCERAL MEDICINE, 2020, 36 (06) : 450 - 455
  • [24] Handwriting identification and verification using artificial intelligence-assisted textural features
    Heng Zhao
    Huihui Li
    Scientific Reports, 13 (1)
  • [25] Artificial intelligence-assisted assessment for Forrest classification of peptic ulcer bleeding: hype or reality?
    Leung, Wai K.
    ENDOSCOPY, 2024, 56 (05) : 343 - 344
  • [26] Development and validation of the diagnostic accuracy of artificial intelligence-assisted ultrasound in the classification of splenic trauma
    Jiang, Xue
    Luo, Yukun
    He, Xuelei
    Wang, Kun
    Song, Wenjing
    Ye, Qinggui
    Feng, Lei
    Wang, Wei
    Hu, Xiaojuan
    Li, Hua
    ANNALS OF TRANSLATIONAL MEDICINE, 2022, 10 (19)
  • [27] Establishment and preliminary clinical verification of an artificial intelligence-assisted colorectal polyps classification system
    潘鹏
    China Medical Abstracts(Internal Medicine), 2021, 38 (01) : 44 - 45
  • [28] Artificial Intelligence-Assisted Processing of Anterior Segment OCT Images in the Diagnosis of Vitreoretinal Lymphoma
    Gozzi, Fabrizio
    Bertolini, Marco
    Gentile, Pietro
    Verzellesi, Laura
    Trojani, Valeria
    De Simone, Luca
    Bolletta, Elena
    Mastrofilippo, Valentina
    Farnetti, Enrico
    Nicoli, Davide
    Croci, Stefania
    Belloni, Lucia
    Zerbini, Alessandro
    Adani, Chantal
    De Maria, Michele
    Kosmarikou, Areti
    Vecchi, Marco
    Invernizzi, Alessandro
    Ilariucci, Fiorella
    Zanelli, Magda
    Iori, Mauro
    Cimino, Luca
    DIAGNOSTICS, 2023, 13 (14)
  • [29] Searching for underlying atrial fibrillation using artificial intelligence-assisted MRI images from ischemic stroke patients
    Zhang, Z.
    Lin, K.
    Wang, J.
    Ding, L.
    Sun, Y.
    Fu, C.
    Qian, D.
    Li, J.
    Huang, D.
    EUROPEAN HEART JOURNAL, 2022, 43 : 543 - 543
  • [30] Detecting Specimen Contamination in Whole Slide Imaging Using Artificial Intelligence
    Babaie, Morteza
    Riasatian, Abtin
    Hemati, Sobhan
    Sajadi, Mahjabin
    Batten, Adrian
    Sikdar, Soma
    Pantanowitz, Liron
    Tizhoosh, Hamid
    MODERN PATHOLOGY, 2020, 33 (SUPPL 2) : 1438 - 1438