Artificial intelligence-assisted quantification and assessment of whole slide images for pediatric kidney disease diagnosis

被引:2
|
作者
Feng, Chunyue [1 ,2 ]
Ong, Kokhaur [3 ]
Young, David M. [4 ,5 ]
Chen, Bingxian [6 ]
Li, Longjie [3 ]
Huo, Xinmi [3 ]
Lu, Haoda [3 ,7 ]
Gu, Weizhong [2 ,8 ]
Liu, Fei [1 ,2 ]
Tang, Hongfeng [2 ,8 ]
Zhao, Manli [2 ,8 ]
Yang, Min [2 ,8 ]
Zhu, Kun [2 ,8 ]
Huang, Limin [1 ,2 ]
Wang, Qiang [6 ]
Marini, Gabriel Pik Liang [3 ]
Gui, Kun [6 ]
Han, Hao [4 ]
Sanders, Stephan J. [5 ]
Li, Lin [9 ]
Yu, Weimiao [3 ,4 ,7 ]
Mao, Jianhua [1 ,2 ,8 ]
机构
[1] Zhejiang Univ, Childrens Hosp, Dept Nephrol, Sch Med, Hangzhou 310000, Peoples R China
[2] Natl Clin Res Ctr Child Hlth, Hangzhou 310000, Peoples R China
[3] ASTAR, Bioinformat Inst, Singapore 138673, Singapore
[4] ASTAR, Inst Mol & Cell Biol, Singapore 138673, Singapore
[5] Univ Calif San Francisco, UCSF Weill Inst Neurosci, Dept Psychiat & Behav Sci, San Francisco, CA 94143 USA
[6] Ningbo Konfoong Bioinformat Tech Co Ltd, Ningbo 315000, Peoples R China
[7] Nanjing Univ Informat Sci & Technol, Inst AI Med, Nanjing 210044, Peoples R China
[8] Zhejiang Univ, Childrens Hosp, Dept Pathol, Sch Med, Hangzhou 310000, Peoples R China
[9] Naval Med Univ, Shanghai Changzheng Hosp, Dept Nephrol, Shanghai 200003, Peoples R China
关键词
SEGMENTATION; PREVALENCE;
D O I
10.1093/bioinformatics/btad740
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Pediatric kidney disease is a widespread, progressive condition that severely impacts growth and development of children. Chronic kidney disease is often more insidious in children than in adults, usually requiring a renal biopsy for diagnosis. Biopsy evaluation requires copious examination by trained pathologists, which can be tedious and prone to human error. In this study, we propose an artificial intelligence (AI) method to assist pathologists in accurate segmentation and classification of pediatric kidney structures, named as AI-based Pediatric Kidney Diagnosis (APKD).Results: We collected 2935 pediatric patients diagnosed with kidney disease for the development of APKD. The dataset comprised 93 932 histological structures annotated manually by three skilled nephropathologists. APKD scored an average accuracy of 94% for each kidney structure category, including 99% in the glomerulus. We found strong correlation between the model and manual detection in detected glomeruli (Spearman correlation coefficient r = 0.98, P < .001; intraclass correlation coefficient ICC = 0.98, 95% CI = 0.96-0.98). Compared to manual detection, APKD was approximately 5.5 times faster in segmenting glomeruli. Finally, we show how the pathological features extracted by APKD can identify focal abnormalities of the glomerular capillary wall to aid in the early diagnosis of pediatric kidney disease.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Artificial Intelligence-Assisted Classification of Gliomas Using Whole Slide Images
    Jose, Laya
    Liu, Sidong
    Russo, Carlo
    Cong, Cong
    Song, Yang
    Rodriguez, Michael
    Di Ieva, Antonio
    ARCHIVES OF PATHOLOGY & LABORATORY MEDICINE, 2023, 147 (08) : 916 - 924
  • [2] ARTIFICIAL INTELLIGENCE-ASSISTED PREDICTION OF LYMPH NODE METASTASIS IN COLORECTAL CANCER USING WHOLE PATHOLOGICAL SLIDE IMAGES
    Takashina, Yuki
    Kudo, Shinei
    Miyachi, Hideyuki
    Ichimasa, Katsuro
    Kouyama, Yuta
    Ogawa, Yushi
    Mori, Yuichi
    Maeda, Yasuharu
    Kudo, Toyoki
    Shimada, Shoji
    Nakahara, Kenta
    Takehara, Yusuke
    Mukai, Shunpei
    Hayashi, Takemasa
    Wakamura, Kunihiko
    Enami, Yuta
    Sawada, Naruhiko
    Baba, Toshiyuki
    Nemoto, Tetsuo
    Ishida, Fumio
    Misawa, Masashi
    GASTROINTESTINAL ENDOSCOPY, 2022, 95 (06) : AB179 - AB180
  • [3] Artificial intelligence-assisted identification and quantification of osteoclasts
    Emmanuel, Thomas
    Bruel, Annemarie
    Thomsen, Jesper Skovhus
    Steiniche, Torben
    Brent, Mikkel Bo
    METHODSX, 2021, 8
  • [4] ARTIFICIAL INTELLIGENCE-ASSISTED OCCUPATIONAL LUNG-DISEASE DIAGNOSIS
    HARBER, P
    MCCOY, JM
    HOWARD, K
    GREER, D
    LUO, J
    CHEST, 1991, 100 (02) : 340 - 346
  • [5] ARTIFICIAL INTELLIGENCE-ASSISTED JAUNDICE DETECTION BY SMARTPHONE IMAGES
    Su, Tung-Hung
    Li, Jia-Wei
    Shu, Po-Yeh
    Lee, Ming-Sui
    Kao, Jia-Horng
    Chou, Cheng-Fu
    HEPATOLOGY, 2022, 76 : S1078 - S1078
  • [6] Artificial Intelligence-Assisted Diagnosis for Early Intervention Patients
    Sierra, Ignacio
    Diaz-Diaz, Norberto
    Barranco, Carlos
    Carrasco-Villalon, Rocio
    APPLIED SCIENCES-BASEL, 2022, 12 (18):
  • [7] Artificial Intelligence-Assisted Processing of Anterior Segment OCT Images in the Diagnosis of Vitreoretinal Lymphoma
    Gozzi, Fabrizio
    Bertolini, Marco
    Gentile, Pietro
    Verzellesi, Laura
    Trojani, Valeria
    De Simone, Luca
    Bolletta, Elena
    Mastrofilippo, Valentina
    Farnetti, Enrico
    Nicoli, Davide
    Croci, Stefania
    Belloni, Lucia
    Zerbini, Alessandro
    Adani, Chantal
    De Maria, Michele
    Kosmarikou, Areti
    Vecchi, Marco
    Invernizzi, Alessandro
    Ilariucci, Fiorella
    Zanelli, Magda
    Iori, Mauro
    Cimino, Luca
    DIAGNOSTICS, 2023, 13 (14)
  • [8] Artificial intelligence-assisted diagnosis of ocular surface diseases
    Zhang, Zuhui
    Wang, Ying
    Zhang, Hongzhen
    Samusak, Arzigul
    Rao, Huimin
    Xiao, Chun
    Abula, Muhetaer
    Cao, Qixin
    Dai, Qi
    FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2023, 11
  • [9] Diagnosis of diabetic kidney disease in whole slide images via AI-driven quantification of pathological indicators
    Liu, Xueyu
    Wu, Yongfei
    Chen, Yilin
    Hui, Dongna
    Zhang, Jianan
    Hao, Fang
    Lu, Yuanyue
    Cheng, Hangbei
    Zeng, Yue
    Han, Weixia
    Wang, Chen
    Li, Ming
    Zhou, Xiaoshuang
    Zheng, Wen
    COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 166
  • [10] Artificial Intelligence-Assisted Diagnostic Approaches for Pancreatic Disease
    Anastasiou, Jiannis
    Coronel, Emmanuel
    Cazacu, Irina
    Saftoiu, Adrian
    Berzin, Tyler
    PANCREAS, 2021, 50 (08) : E69 - E70