Artificial intelligence-assisted quantification and assessment of whole slide images for pediatric kidney disease diagnosis

被引:2
|
作者
Feng, Chunyue [1 ,2 ]
Ong, Kokhaur [3 ]
Young, David M. [4 ,5 ]
Chen, Bingxian [6 ]
Li, Longjie [3 ]
Huo, Xinmi [3 ]
Lu, Haoda [3 ,7 ]
Gu, Weizhong [2 ,8 ]
Liu, Fei [1 ,2 ]
Tang, Hongfeng [2 ,8 ]
Zhao, Manli [2 ,8 ]
Yang, Min [2 ,8 ]
Zhu, Kun [2 ,8 ]
Huang, Limin [1 ,2 ]
Wang, Qiang [6 ]
Marini, Gabriel Pik Liang [3 ]
Gui, Kun [6 ]
Han, Hao [4 ]
Sanders, Stephan J. [5 ]
Li, Lin [9 ]
Yu, Weimiao [3 ,4 ,7 ]
Mao, Jianhua [1 ,2 ,8 ]
机构
[1] Zhejiang Univ, Childrens Hosp, Dept Nephrol, Sch Med, Hangzhou 310000, Peoples R China
[2] Natl Clin Res Ctr Child Hlth, Hangzhou 310000, Peoples R China
[3] ASTAR, Bioinformat Inst, Singapore 138673, Singapore
[4] ASTAR, Inst Mol & Cell Biol, Singapore 138673, Singapore
[5] Univ Calif San Francisco, UCSF Weill Inst Neurosci, Dept Psychiat & Behav Sci, San Francisco, CA 94143 USA
[6] Ningbo Konfoong Bioinformat Tech Co Ltd, Ningbo 315000, Peoples R China
[7] Nanjing Univ Informat Sci & Technol, Inst AI Med, Nanjing 210044, Peoples R China
[8] Zhejiang Univ, Childrens Hosp, Dept Pathol, Sch Med, Hangzhou 310000, Peoples R China
[9] Naval Med Univ, Shanghai Changzheng Hosp, Dept Nephrol, Shanghai 200003, Peoples R China
关键词
SEGMENTATION; PREVALENCE;
D O I
10.1093/bioinformatics/btad740
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Pediatric kidney disease is a widespread, progressive condition that severely impacts growth and development of children. Chronic kidney disease is often more insidious in children than in adults, usually requiring a renal biopsy for diagnosis. Biopsy evaluation requires copious examination by trained pathologists, which can be tedious and prone to human error. In this study, we propose an artificial intelligence (AI) method to assist pathologists in accurate segmentation and classification of pediatric kidney structures, named as AI-based Pediatric Kidney Diagnosis (APKD).Results: We collected 2935 pediatric patients diagnosed with kidney disease for the development of APKD. The dataset comprised 93 932 histological structures annotated manually by three skilled nephropathologists. APKD scored an average accuracy of 94% for each kidney structure category, including 99% in the glomerulus. We found strong correlation between the model and manual detection in detected glomeruli (Spearman correlation coefficient r = 0.98, P < .001; intraclass correlation coefficient ICC = 0.98, 95% CI = 0.96-0.98). Compared to manual detection, APKD was approximately 5.5 times faster in segmenting glomeruli. Finally, we show how the pathological features extracted by APKD can identify focal abnormalities of the glomerular capillary wall to aid in the early diagnosis of pediatric kidney disease.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Artificial Intelligence-Assisted Electrocardiography for Early Diagnosis of Thyrotoxic Periodic Paralysis
    Lin, Shih-Hua P.
    Sung, Chih-Chien
    Tseng, Min-hua
    JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2021, 32 (10): : 374 - 374
  • [22] Artificial intelligence-assisted cervical dysplasia detection using papanicolaou smear images
    Mulmule, Pallavi V.
    Kanphade, Rajendra D.
    Dhane, Dhiraj M.
    VISUAL COMPUTER, 2023, 39 (06): : 2381 - 2392
  • [23] Current progress in artificial intelligence-assisted medical image analysis for chronic kidney disease: A literature review
    Zhao, Dan
    Wang, Wei
    Tang, Tian
    Zhang, Ying-Ying
    Yu, Chen
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2023, 21 : 3315 - 3326
  • [24] Artificial intelligence-assisted cervical dysplasia detection using papanicolaou smear images
    Pallavi V. Mulmule
    Rajendra D. Kanphade
    Dhiraj M. Dhane
    The Visual Computer, 2023, 39 (6) : 2381 - 2392
  • [25] Artificial intelligence based liver portal tract region identification and quantification with transplant biopsy whole-slide images
    Yu, Hanyi
    Sharifai, Nima
    Jiang, Kun
    Wang, Fusheng
    Teodoro, George
    Farris, Alton B.
    Kong, Jun
    COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 150
  • [26] Whole Slide Images in Artificial Intelligence Applications in Digital Pathology: Challenges and Pitfalls
    Basak, Kayhan
    Ozyoruk, Kutsev Bengisu
    Demir, Derya
    TURKISH JOURNAL OF PATHOLOGY, 2023, 39 (02) : 101 - 108
  • [27] An Artificial Intelligent System for Prostate Cancer Diagnosis in Whole Slide Images
    Saha, Sajib
    Vignarajan, Janardhan
    Flesch, Adam
    Jelinko, Patrik
    Gorog, Petra
    Szep, Eniko
    Toth, Csaba
    Gombas, Peter
    Schvarcz, Tibor
    Mihaly, Orsolya
    Kapin, Marianna
    Zub, Alexandra
    Kuthi, Levente
    Tiszlavicz, Laszlo
    Glasz, Tibor
    Frost, Shaun
    JOURNAL OF MEDICAL SYSTEMS, 2024, 48 (01)
  • [28] Artificial Intelligence-Assisted Diagnosis Technology and Its Advance Based on Glaucoma Imaging
    Li Mingyuan
    Fang Fengzhou
    LASER & OPTOELECTRONICS PROGRESS, 2024, 61 (14)
  • [29] Deep Learning Assisted Diagnosis of Onychomycosis on Whole-Slide Images
    Jansen, Philipp
    Creosteanu, Adelaida
    Matyas, Viktor
    Dilling, Amrei
    Pina, Ana
    Saggini, Andrea
    Schimming, Tobias
    Landsberg, Jennifer
    Burgdorf, Birte
    Giaquinta, Sylvia
    Mueller, Hansgeorg
    Emberger, Michael
    Rose, Christian
    Schmitz, Lutz
    Geraud, Cyrill
    Schadendorf, Dirk
    Schaller, Joerg
    Alber, Maximilian
    Klauschen, Frederick
    Griewank, Klaus G.
    JOURNAL OF FUNGI, 2022, 8 (09)
  • [30] SynthEye: Investigating the Impact of Synthetic Data on Artificial Intelligence-assisted Gene Diagnosis of Inherited Retinal Disease
    Veturi, Yoga Advaith
    Woof, William
    Lazebnik, Teddy
    Moghul, Ismail
    Woodward-Court, Peter
    Wagner, Siegfried K.
    de Guimaraes, Thales Antonio Cabral
    Varela, Malena Daich
    Liefers, Bart
    Patel, Praveen J.
    Beck, Stephan
    Webster, Andrew R.
    Mahroo, Omar
    Keane, Pearse A.
    Michaelides, Michel
    Balaskas, Konstantinos
    Pontikos, Nikolas
    OPHTHALMOLOGY SCIENCE, 2023, 3 (02):