Artificial intelligence-assisted quantification and assessment of whole slide images for pediatric kidney disease diagnosis

被引:2
|
作者
Feng, Chunyue [1 ,2 ]
Ong, Kokhaur [3 ]
Young, David M. [4 ,5 ]
Chen, Bingxian [6 ]
Li, Longjie [3 ]
Huo, Xinmi [3 ]
Lu, Haoda [3 ,7 ]
Gu, Weizhong [2 ,8 ]
Liu, Fei [1 ,2 ]
Tang, Hongfeng [2 ,8 ]
Zhao, Manli [2 ,8 ]
Yang, Min [2 ,8 ]
Zhu, Kun [2 ,8 ]
Huang, Limin [1 ,2 ]
Wang, Qiang [6 ]
Marini, Gabriel Pik Liang [3 ]
Gui, Kun [6 ]
Han, Hao [4 ]
Sanders, Stephan J. [5 ]
Li, Lin [9 ]
Yu, Weimiao [3 ,4 ,7 ]
Mao, Jianhua [1 ,2 ,8 ]
机构
[1] Zhejiang Univ, Childrens Hosp, Dept Nephrol, Sch Med, Hangzhou 310000, Peoples R China
[2] Natl Clin Res Ctr Child Hlth, Hangzhou 310000, Peoples R China
[3] ASTAR, Bioinformat Inst, Singapore 138673, Singapore
[4] ASTAR, Inst Mol & Cell Biol, Singapore 138673, Singapore
[5] Univ Calif San Francisco, UCSF Weill Inst Neurosci, Dept Psychiat & Behav Sci, San Francisco, CA 94143 USA
[6] Ningbo Konfoong Bioinformat Tech Co Ltd, Ningbo 315000, Peoples R China
[7] Nanjing Univ Informat Sci & Technol, Inst AI Med, Nanjing 210044, Peoples R China
[8] Zhejiang Univ, Childrens Hosp, Dept Pathol, Sch Med, Hangzhou 310000, Peoples R China
[9] Naval Med Univ, Shanghai Changzheng Hosp, Dept Nephrol, Shanghai 200003, Peoples R China
关键词
SEGMENTATION; PREVALENCE;
D O I
10.1093/bioinformatics/btad740
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Pediatric kidney disease is a widespread, progressive condition that severely impacts growth and development of children. Chronic kidney disease is often more insidious in children than in adults, usually requiring a renal biopsy for diagnosis. Biopsy evaluation requires copious examination by trained pathologists, which can be tedious and prone to human error. In this study, we propose an artificial intelligence (AI) method to assist pathologists in accurate segmentation and classification of pediatric kidney structures, named as AI-based Pediatric Kidney Diagnosis (APKD).Results: We collected 2935 pediatric patients diagnosed with kidney disease for the development of APKD. The dataset comprised 93 932 histological structures annotated manually by three skilled nephropathologists. APKD scored an average accuracy of 94% for each kidney structure category, including 99% in the glomerulus. We found strong correlation between the model and manual detection in detected glomeruli (Spearman correlation coefficient r = 0.98, P < .001; intraclass correlation coefficient ICC = 0.98, 95% CI = 0.96-0.98). Compared to manual detection, APKD was approximately 5.5 times faster in segmenting glomeruli. Finally, we show how the pathological features extracted by APKD can identify focal abnormalities of the glomerular capillary wall to aid in the early diagnosis of pediatric kidney disease.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Reflection on the equitable attribution of responsibility for artificial intelligence-assisted diagnosis and treatment decisions
    Chen, Antian
    Wang, Chenyu
    Zhang, Xinqing
    INTELLIGENT MEDICINE, 2023, 3 (02): : 139 - 143
  • [32] Artificial intelligence-assisted cancer diagnosis improves the efficiency of pathologists in prostatic biopsies
    Eloy, Catarina
    Marques, Ana
    Pinto, Joao
    Pinheiro, Jorge
    Campelos, Sofia
    Curado, Monica
    Vale, Joao
    Polonia, Antonio
    VIRCHOWS ARCHIV, 2023, 482 (03) : 595 - 604
  • [33] Artificial Intelligence-assisted Prostate Cancer Diagnosis: Radiologic-Pathologic Correlation
    Alcala Mata, Lidia
    Antonio Retamero, Juan
    Gupta, Rajan T.
    Garcia Figueras, Roberto
    Luna, Antonio
    RADIOGRAPHICS, 2021, 41 (06) : 1676 - 1697
  • [34] Artificial intelligence-assisted mobile dietary assessment: time to expand the standard toolkit?
    Engle-Stone, Reina
    AMERICAN JOURNAL OF CLINICAL NUTRITION, 2024, 120 (05): : 1005 - 1006
  • [35] Artificial Intelligence-Assisted Sac Diameter Assessment for Complex Endovascular Aortic Repair
    Wegner, Moritz
    Fontaine, Vincent
    Nana, Petroula
    Dieffenbach, Bryan V.
    Fabre, Dominique
    Haulon, Stephan
    JOURNAL OF ENDOVASCULAR THERAPY, 2023,
  • [36] Clinical Trial Failures in Inflammatory Bowel Disease: An Artificial Intelligence-Assisted Review
    Njoku, Kingsley
    Yadete, Tesfaye
    Bettencourt-Silva, Joao
    Liu, Matthew T.
    Anand, Vibha
    Purpura, Alberto
    Kartoun, Uri
    Koski, Eileen
    Mulligan, Natasha
    Claggett, Brian
    Stappenbeck, Thaddeus
    Liu, Julia J.
    AMERICAN JOURNAL OF GASTROENTEROLOGY, 2023, 118 (10): : S1334 - S1334
  • [37] Identification of Preeclamptic Placenta in Whole Slide Images Using Artificial Intelligence Placenta Analysis
    Jung, Young Mi
    Park, Seyeon
    Ahn, Youngbin
    Kim, Haeryoung
    Kim, Eun Na
    Park, Hye Eun
    Kim, Sun Min
    Kim, Byoung Jae
    Lee, Jeesun
    Park, Chan-Wook
    Park, Joong Shin
    Jun, Jong Kwan
    Kim, Young-Gon
    Lee, Seung Mi
    JOURNAL OF KOREAN MEDICAL SCIENCE, 2024, 39 (39)
  • [38] A Comparative Review of Autonomous Artificial Intelligence vs Artificial Intelligence-Assisted Human Optical Diagnosis of Colorectal Polyps Reply
    Djinbachian, Roupen
    Rex, Douglas k.
    VON Renteln, Daniel
    GASTROENTEROLOGY, 2024, 167 (07) : 1496 - 1497
  • [39] Detection of malignancy in whole slide images of endometrial cancer biopsies using artificial intelligence
    Fell, Christina
    Mohammadi, Mahnaz
    Morrison, David
    Arandjelovic, Ognjen
    Syed, Sheeba
    Konanahalli, Prakash
    Bell, Sarah
    Bryson, Gareth
    Harrison, David J.
    Harris-Birtill, David
    PLOS ONE, 2023, 18 (03):
  • [40] Artificial Intelligence to predict BRAF mutational status from whole slide images in melanoma
    Bossard, C.
    Salhi, Y.
    Chetritt, J.
    Salhi, S.
    ANNALS OF ONCOLOGY, 2024, 35 : S739 - S739