Effective Density of Non-Degenerate Random Walks on Homogeneous Spaces

被引:0
|
作者
Kim, Wooyeon [1 ]
Kogler, Constantin [2 ]
机构
[1] Swiss Fed Inst Technol, Dept Math, Ramistr 101, CH-8092 Zurich, Switzerland
[2] Univ Oxford, Math Inst, Radcliffe Observ Quarter, Woodstock Rd, Oxford OX2 6GG, England
基金
欧洲研究理事会;
关键词
STATIONARY MEASURES; SPECTRAL GAP; LIE-GROUPS; SEMISIMPLE; INVARIANT; SUBGROUPS; BOUNDS;
D O I
10.1093/imrn/rnae011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove effective density of random walks on homogeneous spaces, assuming that the underlying measure is supported on matrices generating a dense subgroup and having algebraic entries. The main novelty is an argument passing from high dimension to effective equidistribution in the setting of random walks on homogeneous spaces, exploiting the spectral gap of the associated convolution operator.
引用
收藏
页码:9218 / 9236
页数:19
相关论文
共 50 条