Effective Density of Non-Degenerate Random Walks on Homogeneous Spaces

被引:0
|
作者
Kim, Wooyeon [1 ]
Kogler, Constantin [2 ]
机构
[1] Swiss Fed Inst Technol, Dept Math, Ramistr 101, CH-8092 Zurich, Switzerland
[2] Univ Oxford, Math Inst, Radcliffe Observ Quarter, Woodstock Rd, Oxford OX2 6GG, England
基金
欧洲研究理事会;
关键词
STATIONARY MEASURES; SPECTRAL GAP; LIE-GROUPS; SEMISIMPLE; INVARIANT; SUBGROUPS; BOUNDS;
D O I
10.1093/imrn/rnae011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove effective density of random walks on homogeneous spaces, assuming that the underlying measure is supported on matrices generating a dense subgroup and having algebraic entries. The main novelty is an argument passing from high dimension to effective equidistribution in the setting of random walks on homogeneous spaces, exploiting the spectral gap of the associated convolution operator.
引用
收藏
页码:9218 / 9236
页数:19
相关论文
共 50 条
  • [21] SOME ASYMPTOTIC PROPERTIES OF RANDOM WALKS ON HOMOGENEOUS SPACES
    Benard, Timothee
    JOURNAL OF MODERN DYNAMICS, 2023, 19 : 161 - 186
  • [23] Random walks on homogeneous spaces and Diophantine approximation on fractals
    David Simmons
    Barak Weiss
    Inventiones mathematicae, 2019, 216 : 337 - 394
  • [24] Random walks on homogeneous spaces and Diophantine approximation on fractals
    Simmons, David
    Weiss, Barak
    INVENTIONES MATHEMATICAE, 2019, 216 (02) : 337 - 394
  • [25] The proportion of non-degenerate complementary subspaces in classical spaces
    S. P. Glasby
    Ferdinand Ihringer
    Sam Mattheus
    Designs, Codes and Cryptography, 2023, 91 : 2879 - 2891
  • [26] Homogeneous non-degenerate 3-(α,δ)-Sasaki manifolds and submersions over quaternionic Kähler spaces
    Ilka Agricola
    Giulia Dileo
    Leander Stecker
    Annals of Global Analysis and Geometry, 2021, 60 : 111 - 141
  • [27] Homogeneous Levi non-degenerate hypersurfaces in C3
    Doubrov, Boris
    Medvedev, Alexandr
    The, Dennis
    MATHEMATISCHE ZEITSCHRIFT, 2021, 297 (1-2) : 669 - 709
  • [28] Non-degenerate Anisocurved Surfaces in Homogeneous 3-Manifolds
    Albujer, Alma L.
    dos Santos, Fabio R.
    RESULTS IN MATHEMATICS, 2025, 80 (02)
  • [29] Cutpoints of non-homogeneous random walks
    Lo, Chak Hei
    Menshikov, Mikhail, V
    Wade, Andrew R.
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2022, 19 (01): : 493 - 510
  • [30] Symmetric Branching Walks in Homogeneous and Non Homogeneous Random Environments
    Yarovaya, Elena
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2012, 41 (07) : 1232 - 1249