Effective Density of Non-Degenerate Random Walks on Homogeneous Spaces

被引:0
|
作者
Kim, Wooyeon [1 ]
Kogler, Constantin [2 ]
机构
[1] Swiss Fed Inst Technol, Dept Math, Ramistr 101, CH-8092 Zurich, Switzerland
[2] Univ Oxford, Math Inst, Radcliffe Observ Quarter, Woodstock Rd, Oxford OX2 6GG, England
基金
欧洲研究理事会;
关键词
STATIONARY MEASURES; SPECTRAL GAP; LIE-GROUPS; SEMISIMPLE; INVARIANT; SUBGROUPS; BOUNDS;
D O I
10.1093/imrn/rnae011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove effective density of random walks on homogeneous spaces, assuming that the underlying measure is supported on matrices generating a dense subgroup and having algebraic entries. The main novelty is an argument passing from high dimension to effective equidistribution in the setting of random walks on homogeneous spaces, exploiting the spectral gap of the associated convolution operator.
引用
收藏
页码:9218 / 9236
页数:19
相关论文
共 50 条
  • [31] ON NON-DEGENERATE PROBABILITY DISTRIBUTIONS IN 1P-SPACES
    VAKHANIY.NN
    THEORY OF PROBILITY AND ITS APPLICATIONS,USSR, 1966, 11 (03): : 463 - &
  • [32] Aspects of convergence of random walks on finite volume homogeneous spaces
    Prohaska, Roland
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2024, 39 (02): : 243 - 267
  • [33] Recurrence and ergodicity of random walks on linear groups and on homogeneous spaces
    Guivarc'h, Y.
    Raja, C. R. E.
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2012, 32 : 1313 - 1349
  • [34] Random generation of direct sums of finite non-degenerate subspaces
    Glasby, Stephen P.
    Niemeyer, Alice C.
    Praeger, Cheryl E.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2022, 649 : 408 - 432
  • [35] BROWNIAN TRANSITION FUNCTIONS + RANDOM WALKS ON CERTAIN HOMOGENEOUS SPACES
    GANGOLLI, R
    JOURNAL OF MATHEMATICS AND MECHANICS, 1964, 13 (04): : 603 - &
  • [36] MARKOV RANDOM WALKS ON HOMOGENEOUS SPACES AND DIOPHANTINE APPROXIMATION ON FRACTALS
    Prohaska, Roland
    Sert, Cagri
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 373 (11) : 8163 - 8196
  • [37] Random Walks in Degenerate Random Environments
    Holmes, Mark
    Salisbury, Thomas S.
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2014, 66 (05): : 1050 - 1077
  • [38] Non-degenerate homogeneous ∈-Kahler and ∈-quaternion Kahler structures of linear type
    Lujan, Ignacio
    Swann, Andrew
    MONATSHEFTE FUR MATHEMATIK, 2015, 178 (01): : 113 - 142
  • [39] Invariance principle for non-homogeneous random walks
    Georgiou, Nicholas
    Mijatovic, Aleksandar
    Wade, Andrew R.
    ELECTRONIC JOURNAL OF PROBABILITY, 2019, 24
  • [40] Adiabatic approximation in the density matrix approach: non-degenerate systems
    Pinto, ACA
    Romero, KMF
    Thomaz, MT
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2002, 311 (1-2) : 169 - 187