Introduction to random walks on homogeneous spaces

被引:0
|
作者
Yves Benoist
Jean-François Quint
机构
[1] Université Paris-Sud 11,Centre national de la recherche scientifique–Département de Mathématiques
[2] Centre national de la recherche scientifique–Université Paris-Nord,undefined
来源
关键词
Lie groups; discrete subgroups; homogeneous dynamics; random walk; 22E40; 37C85; 60J05;
D O I
暂无
中图分类号
学科分类号
摘要
Let a0 and a1 be two matrices in SL(2, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{Z}}$$\end{document}) which span a non-solvable group. Let x0 be an irrational point on the torus \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{T}^2}$$\end{document}. We toss a0 or a1, apply it to x0, get another irrational point x1, do it again to x1, get a point x2, and again. This random trajectory is equidistributed on the torus. This phenomenon is quite general on any finite volume homogeneous space.
引用
收藏
页码:135 / 166
页数:31
相关论文
共 50 条
  • [1] Introduction to random walks on homogeneous spaces
    Benoist, Yves
    Quint, Jean-Francois
    JAPANESE JOURNAL OF MATHEMATICS, 2012, 7 (02): : 135 - 166
  • [2] On random walks and switched random walks on homogeneous spaces
    Moreno, Elvira
    Velasco, Mauricio
    COMBINATORICS PROBABILITY AND COMPUTING, 2023, 32 (03) : 398 - 421
  • [3] RANDOM-WALKS ON HOMOGENEOUS SPACES
    SCHOTT, R
    LECTURE NOTES IN MATHEMATICS, 1984, 1064 : 564 - 575
  • [4] RECURRENT RANDOM-WALKS ON HOMOGENEOUS SPACES
    SCHOTT, R
    LECTURE NOTES IN MATHEMATICS, 1986, 1210 : 146 - 152
  • [5] Random walks on finite volume homogeneous spaces
    Benoist, Yves
    Quint, Jean-Francois
    INVENTIONES MATHEMATICAE, 2012, 187 (01) : 37 - 59
  • [6] Spread out random walks on homogeneous spaces
    Prohaska, Roland
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2021, 41 (11) : 3439 - 3473
  • [7] Random walks on finite volume homogeneous spaces
    Yves Benoist
    Jean-Francois Quint
    Inventiones mathematicae, 2012, 187 : 37 - 59
  • [8] Introduction to Random Walks on Noncommutative Spaces
    Biane, Philippe
    QUANTUM POTENTIAL THEORY, 2008, 1954 : 61 - 116
  • [9] Expanding measures: Random walks and rigidity on homogeneous spaces
    Prohaska, Roland
    Sert, Cagri
    Shi, Ronggang
    FORUM OF MATHEMATICS SIGMA, 2023, 11
  • [10] DICHOTOMIC THEOREM FOR RANDOM-WALKS ON HOMOGENEOUS SPACES
    HENNION, H
    ROYNETTE, B
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1977, 285 (05): : 399 - 401