Introduction to random walks on homogeneous spaces

被引:0
|
作者
Yves Benoist
Jean-François Quint
机构
[1] Université Paris-Sud 11,Centre national de la recherche scientifique–Département de Mathématiques
[2] Centre national de la recherche scientifique–Université Paris-Nord,undefined
来源
关键词
Lie groups; discrete subgroups; homogeneous dynamics; random walk; 22E40; 37C85; 60J05;
D O I
暂无
中图分类号
学科分类号
摘要
Let a0 and a1 be two matrices in SL(2, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{Z}}$$\end{document}) which span a non-solvable group. Let x0 be an irrational point on the torus \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{T}^2}$$\end{document}. We toss a0 or a1, apply it to x0, get another irrational point x1, do it again to x1, get a point x2, and again. This random trajectory is equidistributed on the torus. This phenomenon is quite general on any finite volume homogeneous space.
引用
收藏
页码:135 / 166
页数:31
相关论文
共 50 条