BOUNDS FOR EXIT TIMES OF BROWNIAN MOTION AND THE FIRST DIRICHLET EIGENVALUE FOR THE LAPLACIAN

被引:0
|
作者
Banuelos, Rodrigo [1 ]
Mariano, Phanuel [2 ]
Wang, Jing [1 ]
机构
[1] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
[2] Union Coll, Dept Math, Schenectady, NY 12308 USA
基金
美国国家科学基金会;
关键词
Exit times; moments; torsion function; Dirichlet Laplacian; principal eigenvalue; extremals; HOT-SPOTS CONJECTURE; TORSIONAL RIGIDITY; SPECTRAL GAP; INEQUALITIES; MOMENTS; EIGENFUNCTIONS; DIFFUSIONS;
D O I
10.1090/tran/8903
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For domains in Rd, d > 2, we prove universal upper and lower bounds on the product of the bottom of the spectrum for the Laplacian to the power p > 0 and the supremum over all starting points of the p-moments of the exit time of Brownian motion. It is shown that the lower bound is sharp for integer values of p and that for p > 1, the upper bound is asymptotically sharp as d -> infinity. For all p > 0, we prove the existence of an extremal domain among the class of domains that are convex and symmetric with respect to all coordinate axes. For this class of domains we conjecture that the cube is extremal.
引用
收藏
页码:5409 / 5432
页数:24
相关论文
共 50 条
  • [21] Upper Bounds on the First Eigenvalue for the p-Laplacian
    Zhi Li
    Guangyue Huang
    Mediterranean Journal of Mathematics, 2020, 17
  • [22] Upper bounds for the first eigenvalue of the Laplacian on compact submanifolds
    Grosjean, JF
    PACIFIC JOURNAL OF MATHEMATICS, 2002, 206 (01) : 93 - 112
  • [23] LOWER BOUNDS FOR THE FIRST EIGENVALUE OF THE LAPLACIAN ON KAHLER MANIFOLDS
    Li, Xiaolong
    Wang, Kui
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 374 (11) : 8081 - 8099
  • [24] Upper Bounds on the First Eigenvalue for the p-Laplacian
    Li, Zhi
    Huang, Guangyue
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2020, 17 (04)
  • [25] First Dirichlet Eigenvalue and Exit Time Moment Spectra Comparisons
    Vicente Palmer
    Erik Sarrión-Pedralva
    Potential Analysis, 2024, 60 : 489 - 531
  • [26] First Dirichlet Eigenvalue and Exit Time Moment Spectra Comparisons
    Palmer, Vicente
    Sarrion-Pedralva, Erik
    POTENTIAL ANALYSIS, 2024, 60 (01) : 489 - 531
  • [27] Optimization of the First Dirichlet Laplacian Eigenvalue with Respect to a Union of Balls
    E. G. Birgin
    L. Fernandez
    G. Haeser
    A. Laurain
    The Journal of Geometric Analysis, 2023, 33
  • [28] A new proof of the bound for the first Dirichlet eigenvalue of the Laplacian operator
    Li, Chang-Jun
    Gao, Xiang
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2014, 22 (02): : 129 - 139
  • [29] Optimization of the First Dirichlet Laplacian Eigenvalue with Respect to a Union of Balls
    Birgin, E. G.
    Fernandez, L.
    Haeser, G.
    Laurain, A.
    JOURNAL OF GEOMETRIC ANALYSIS, 2023, 33 (06)
  • [30] A monotonicity result for the first Steklov-Dirichlet Laplacian eigenvalue
    Gavitone, Nunzia
    Piscitelli, Gianpaolo
    REVISTA MATEMATICA COMPLUTENSE, 2024, 37 (02): : 509 - 523