A monotonicity result for the first Steklov-Dirichlet Laplacian eigenvalue

被引:0
|
作者
Gavitone, Nunzia [1 ]
Piscitelli, Gianpaolo [1 ]
机构
[1] Univ Napoli Federico II, Dipartimento Matemat & Applicaz R Caccioppoli, Via Cintia,Complesso Univ Monte S Angelo, I-80126 Naples, Italy
来源
REVISTA MATEMATICA COMPLUTENSE | 2024年 / 37卷 / 02期
关键词
Laplacian eigenvalue; Steklov-Dirichlet boundary conditions; Shape derivative; DOMAINS;
D O I
10.1007/s13163-023-00482-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the first Steklov-Dirichlet eigenvalue of the Laplace operator in annular domains with a spherical hole. We prove a monotonicity result with respect to the hole, when the outer region is centrally symmetric.
引用
收藏
页码:509 / 523
页数:15
相关论文
共 50 条
  • [1] A monotonicity result for the first Steklov–Dirichlet Laplacian eigenvalue
    Nunzia Gavitone
    Gianpaolo Piscitelli
    Revista Matemática Complutense, 2024, 37 : 509 - 523
  • [2] Correction to: A monotonicity result for the first Steklov–Dirichlet Laplacian eigenvalue
    Nunzia Gavitone
    Gianpaolo Piscitelli
    Revista Matemática Complutense, 2024, 37 : 525 - 526
  • [3] On the first Steklov-Dirichlet eigenvalue for eccentric annuli
    Hong, Jiho
    Lim, Mikyoung
    Seo, Dong-Hwi
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2022, 201 (02) : 769 - 799
  • [4] AN ISOPERIMETRIC INEQUALITY FOR THE FIRST STEKLOV-DIRICHLET LAPLACIAN EIGENVALUE OF CONVEX SETS WITH A SPHERICAL HOLE
    Gavitone, Nunzia
    Paoli, Gloria
    Piscitelli, Gianpaolo
    Sannipoli, Rossano
    PACIFIC JOURNAL OF MATHEMATICS, 2022, 320 (02) : 241 - 259
  • [5] A shape optimization problem for the first mixed Steklov-Dirichlet eigenvalue
    Seo, Dong-Hwi
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2021, 59 (03) : 345 - 365
  • [6] ON THE FIRST EIGENVALUE OF THE STEKLOV EIGENVALUE PROBLEM FOR THE INFINITY LAPLACIAN
    Le, An
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2006,
  • [7] Monotonicity of the First Dirichlet Eigenvalue of the Laplacian on Manifolds of Non-Positive Curvature
    Carroll, Tom
    Ratzkin, Jesse
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2016, 65 (01) : 353 - 376
  • [8] On the first Steklov–Dirichlet eigenvalue for eccentric annuli
    Jiho Hong
    Mikyoung Lim
    Dong-Hwi Seo
    Annali di Matematica Pura ed Applicata (1923 -), 2022, 201 : 769 - 799
  • [9] A STABILITY RESULT FOR THE STEKLOV LAPLACIAN EIGENVALUE PROBLEM WITH A SPHERICAL OBSTACLE
    Paoli, Gloria
    Piscitelli, Gianpaolo
    Sannipoli, Rossanno
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2021, 20 (01) : 145 - 158
  • [10] Optimizing the first Dirichlet eigenvalue of the Laplacian with an obstacle
    Henrot, Antoine
    Zucco, Davide
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2019, 19 (04) : 1535 - 1559