A monotonicity result for the first Steklov-Dirichlet Laplacian eigenvalue

被引:0
|
作者
Gavitone, Nunzia [1 ]
Piscitelli, Gianpaolo [1 ]
机构
[1] Univ Napoli Federico II, Dipartimento Matemat & Applicaz R Caccioppoli, Via Cintia,Complesso Univ Monte S Angelo, I-80126 Naples, Italy
来源
REVISTA MATEMATICA COMPLUTENSE | 2024年 / 37卷 / 02期
关键词
Laplacian eigenvalue; Steklov-Dirichlet boundary conditions; Shape derivative; DOMAINS;
D O I
10.1007/s13163-023-00482-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the first Steklov-Dirichlet eigenvalue of the Laplace operator in annular domains with a spherical hole. We prove a monotonicity result with respect to the hole, when the outer region is centrally symmetric.
引用
收藏
页码:509 / 523
页数:15
相关论文
共 50 条