BOUNDS FOR EXIT TIMES OF BROWNIAN MOTION AND THE FIRST DIRICHLET EIGENVALUE FOR THE LAPLACIAN

被引:0
|
作者
Banuelos, Rodrigo [1 ]
Mariano, Phanuel [2 ]
Wang, Jing [1 ]
机构
[1] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
[2] Union Coll, Dept Math, Schenectady, NY 12308 USA
基金
美国国家科学基金会;
关键词
Exit times; moments; torsion function; Dirichlet Laplacian; principal eigenvalue; extremals; HOT-SPOTS CONJECTURE; TORSIONAL RIGIDITY; SPECTRAL GAP; INEQUALITIES; MOMENTS; EIGENFUNCTIONS; DIFFUSIONS;
D O I
10.1090/tran/8903
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For domains in Rd, d > 2, we prove universal upper and lower bounds on the product of the bottom of the spectrum for the Laplacian to the power p > 0 and the supremum over all starting points of the p-moments of the exit time of Brownian motion. It is shown that the lower bound is sharp for integer values of p and that for p > 1, the upper bound is asymptotically sharp as d -> infinity. For all p > 0, we prove the existence of an extremal domain among the class of domains that are convex and symmetric with respect to all coordinate axes. For this class of domains we conjecture that the cube is extremal.
引用
收藏
页码:5409 / 5432
页数:24
相关论文
共 50 条
  • [1] Lower bounds for the first Dirichlet eigenvalue of the Laplacian for domains in hyperbolic space
    Artamoshin, Sergei
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2016, 160 (02) : 191 - 208
  • [2] Refined eigenvalue bounds on the Dirichlet fractional Laplacian
    Yolcu, Selma Yildirim
    Yolcu, Turkay
    JOURNAL OF MATHEMATICAL PHYSICS, 2015, 56 (07)
  • [3] BROWNIAN-MOTION AND EIGENVALUES FOR THE DIRICHLET LAPLACIAN
    GRAVERSEN, SE
    RAO, M
    MATHEMATISCHE ZEITSCHRIFT, 1990, 203 (04) : 699 - 708
  • [4] Exit times for geometric brownian motion
    He, Jingmin
    Gao, Zhongqin
    Yang, Yitao
    UPB Scientific Bulletin, Series A: Applied Mathematics and Physics, 2020, 82 (01): : 27 - 34
  • [5] EXIT TIMES FOR GEOMETRIC BROWNIAN MOTION
    He, Jingmin
    Gao, Zhongqin
    Yang, Yitao
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2020, 82 (01): : 27 - 34
  • [6] Isoperimetric bounds for the first eigenvalue of the Laplacian
    Wang, Qiaoling
    Xia, Changyu
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2010, 61 (01): : 171 - 175
  • [7] Isoperimetric bounds for the first eigenvalue of the Laplacian
    Qiaoling Wang
    Changyu Xia
    Zeitschrift für angewandte Mathematik und Physik, 2010, 61 : 171 - 175
  • [8] Optimizing the first Dirichlet eigenvalue of the Laplacian with an obstacle
    Henrot, Antoine
    Zucco, Davide
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2019, 19 (04) : 1535 - 1559
  • [9] ON THE FIRST DIRICHLET LAPLACIAN EIGENVALUE OF REGULAR POLYGONS
    Nitsch, Carlo
    KODAI MATHEMATICAL JOURNAL, 2014, 37 (03) : 595 - 607
  • [10] Domain functionals and exit times for Brownian motion
    Huang, CC
    Miller, D
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 130 (03) : 825 - 831