For domains in Rd, d > 2, we prove universal upper and lower bounds on the product of the bottom of the spectrum for the Laplacian to the power p > 0 and the supremum over all starting points of the p-moments of the exit time of Brownian motion. It is shown that the lower bound is sharp for integer values of p and that for p > 1, the upper bound is asymptotically sharp as d -> infinity. For all p > 0, we prove the existence of an extremal domain among the class of domains that are convex and symmetric with respect to all coordinate axes. For this class of domains we conjecture that the cube is extremal.
机构:
Univ Savoie Mt Blanc, Inst Univ France, Lab Math, UMR 5127, Campus Sci, F-73376 Le Bourget Du Lac, FranceUniv Savoie Mt Blanc, Inst Univ France, Lab Math, UMR 5127, Campus Sci, F-73376 Le Bourget Du Lac, France
Bucur, Dorin
Fragala, Ilaria
论文数: 0引用数: 0
h-index: 0
机构:
Politecn Milan, Dipartimento Matemat, Piazza Leonardo da Vinci 32, I-20133 Milan, ItalyUniv Savoie Mt Blanc, Inst Univ France, Lab Math, UMR 5127, Campus Sci, F-73376 Le Bourget Du Lac, France
机构:
Boston Univ, Questrom Sch Business, Boston, MA 02215 USA
Univ Calif Berkeley, Dept Ind Engn & Operat Res, Berkeley, CA 94720 USABoston Univ, Questrom Sch Business, Boston, MA 02215 USA
Pekoz, Erol A.
Righter, Rhonda
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Berkeley, Dept Ind Engn & Operat Res, Berkeley, CA 94720 USABoston Univ, Questrom Sch Business, Boston, MA 02215 USA