A monotonicity result for the first Steklov-Dirichlet Laplacian eigenvalue

被引:0
|
作者
Gavitone, Nunzia [1 ]
Piscitelli, Gianpaolo [1 ]
机构
[1] Univ Napoli Federico II, Dipartimento Matemat & Applicaz R Caccioppoli, Via Cintia,Complesso Univ Monte S Angelo, I-80126 Naples, Italy
来源
REVISTA MATEMATICA COMPLUTENSE | 2024年 / 37卷 / 02期
关键词
Laplacian eigenvalue; Steklov-Dirichlet boundary conditions; Shape derivative; DOMAINS;
D O I
10.1007/s13163-023-00482-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the first Steklov-Dirichlet eigenvalue of the Laplace operator in annular domains with a spherical hole. We prove a monotonicity result with respect to the hole, when the outer region is centrally symmetric.
引用
收藏
页码:509 / 523
页数:15
相关论文
共 50 条
  • [31] Manifolds with Density and the First Steklov Eigenvalue
    Batista, Marcio
    Santos, Jose I.
    POTENTIAL ANALYSIS, 2024, 60 (04) : 1369 - 1382
  • [32] Optimal shapes for the first Dirichlet eigenvalue of the p-Laplacian and dihedral symmetry
    Chorwadwala, Anisa M. H.
    Ghosh, Mrityunjoy
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 508 (02)
  • [33] Non-monotonicity of the first eigenvalue for the 3D magnetic Robin Laplacian
    Germán Miranda
    Archiv der Mathematik, 2023, 120 : 643 - 649
  • [34] Non-monotonicity of the first eigenvalue for the 3D magnetic Robin Laplacian
    Miranda, German
    ARCHIV DER MATHEMATIK, 2023, 120 (06) : 643 - 649
  • [35] Full description of the eigenvalue set of the Steklov (p, q)-Laplacian
    Barbu, Luminita
    Morosanu, Gheorghe
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 290 : 1 - 16
  • [36] Polygons as maximizers of Dirichlet energy or first eigenvalue of Dirichlet-Laplacian among convex planar domains
    Lamboley, Jimmy
    Novruzi, Arian
    Pierre, Michel
    ADVANCES IN CALCULUS OF VARIATIONS, 2024, 17 (02) : 391 - 420
  • [37] THE ISOLATION OF THE FIRST EIGENVALUE FOR A DIRICHLET EIGENVALUE PROBLEM INVOLVING THE FINSLER p-LAPLACIAN AND A NONLOCAL TERM
    Grecu, Andrei
    REVISTA DE LA UNION MATEMATICA ARGENTINA, 2022, 63 (02): : 443 - 453
  • [38] THE ASYMPTOTIC BEHAVIOUR OF THE p(x)-LAPLACIAN STEKLOV EIGENVALUE PROBLEM
    Yu, Lujuan
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2020, 25 (07): : 2621 - 2637
  • [39] STEKLOV EIGENVALUE PROBLEMS WITH INDEFINITE WEIGHT FOR THE (p, q)-LAPLACIAN
    Boukhsas, A.
    Zerouali, A.
    Chakrone, O.
    Karim, B.
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 2022, 67 (3-4): : 127 - 142
  • [40] Resonant Steklov eigenvalue problem involving the (p, q)-Laplacian
    A. Zerouali
    B. Karim
    O. Chakrone
    A. Boukhsas
    Afrika Matematika, 2019, 30 : 171 - 179