A neural network for beam background decomposition in Belle II at SuperKEKB

被引:0
|
作者
Schwenker, B. [1 ]
Herzberg, L. [1 ]
Buch, Y. [1 ]
Frey, A. [1 ]
Natochii, A. [2 ]
Vahsen, S. [2 ]
Nakayama, H. [3 ,4 ]
机构
[1] Georg August Univ Gottingen, Phys Inst 2, D-37073 Gottingen, Germany
[2] Univ Hawaii, Honolulu, HI 96822 USA
[3] High Energy Accelerator Res Org KEK, Tsukuba 3050801, Japan
[4] Grad Univ Adv Studies, SOKENDAI, Hayama 2400193, Japan
来源
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT | 2023年 / 1049卷
关键词
Belle II; SuperKEKB; Beam background; Neural networks; Nonlinear regression; Machine learning for accelerators;
D O I
10.1016/j.nima.2023.168112
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
We describe a neural network for predicting the background hit rate in the Belle II detector produced by the SuperKEKB electron-positron collider. The neural network, BGNet, learns to predict the individual contributions of different physical background sources, such as beam-gas scattering or continuous top-up injections into the collider, to Belle II sub-detector rates. The samples for learning are archived 1 Hz time series of diagnostic variables from the SuperKEKB collider subsystems and measured hit rates of Belle II used as regression targets. We test the learned model by predicting detector hit rates on archived data from different run periods not used during training. We show that a feature attribution method can help interpret the source of changes in the background level over time.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] A NEURAL NETWORK FOR SIGNAL DECOMPOSITION PROBLEMS
    FORTI, M
    INTERNATIONAL JOURNAL OF CIRCUIT THEORY AND APPLICATIONS, 1991, 19 (01) : 65 - 75
  • [42] NEURAL NETWORK FOR SINGULAR VALUE DECOMPOSITION
    CICHOCKI, A
    ELECTRONICS LETTERS, 1992, 28 (08) : 784 - 786
  • [43] Transputer self-organizing map algorithm for beam background rejection at the BELLE silicon vertex detector
    Lange, JS
    Fukunaga, C
    Tanaka, M
    Bozek, A
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 1999, 420 (1-2): : 288 - 309
  • [44] Track vertex reconstruction with neural networks at the first level trigger of Belle II
    Neuhaus, Sara
    Skambraks, Sebastian
    Kiesling, Christian
    CONNECTING THE DOTS/INTELLIGENT TRACKERS 2017 (CTD/WIT 2017), 2017, 150
  • [45] Pulse-shape Discrimination of Fast Neutron Background using Convolutional Neural Network for NEOS II
    Y. Jeong
    B. Y. Han
    E. J. Jeon
    H. S. Jo
    D. K. Kim
    J. Y. Kim
    J. G. Kim
    Y. D. Kim
    Y. J. Ko
    H. M. Lee
    M. H. Lee
    J. Lee
    C. S. Moon
    Y. M. Oh
    H. K. Park
    K. S. Park
    S. H. Seo
    K. Siyeon
    G. M. Sun
    Y. S. Yoon
    I. Yu
    Journal of the Korean Physical Society, 2020, 77 : 1118 - 1124
  • [46] Pulse-shape Discrimination of Fast Neutron Background using Convolutional Neural Network for NEOS II
    Jeong, Y.
    Han, B. Y.
    Jeon, E. J.
    Jo, H. S.
    Kim, D. K.
    Kim, J. Y.
    Kim, J. G.
    Kim, Y. D.
    Ko, Y. J.
    Lee, H. M.
    Lee, M. H.
    Lee, J.
    Moon, C. S.
    Oh, Y. M.
    Park, H. K.
    Park, K. S.
    Seo, S. H.
    Siyeon, K.
    Sun, G. M.
    Yoon, Y. S.
    Yu, I.
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2020, 77 (12) : 1118 - 1124
  • [47] Susceptibility characterization of beam pipe radiated noise for the PXD detector in Belle II experiment
    Iglesias, M.
    Leitl, P.
    Mueller, F.
    Arcega, F. J.
    Moser, H-G.
    Kiesling, C.
    Pradas, A.
    Echeverria, I.
    Piedrafita, F. J.
    Arteche, F.
    2019 INTERNATIONAL SYMPOSIUM ON ELECTROMAGNETIC COMPATIBILITY (EMC EUROPE 2019), 2019, : 790 - 795
  • [48] Beam Test Performance of the ONSEN Data Reduction System for the Belle II Pixel Detector
    Gessler, Thomas
    Kuehn, Wolfgang
    Lange, Jens Soren
    Liu, Zhen'An
    Munchow, David
    Spruck, Bjoern
    Zhao, Jingzhou
    2014 19TH IEEE-NPSS REAL TIME CONFERENCE (RT), 2014,
  • [49] SLA Decomposition for Network Slicing: A Deep Neural Network Approach
    Hsu, Cyril Shih-Huan
    De Vleeschauwer, Danny
    Papagianni, Chrysa
    IEEE Networking Letters, 2023, 5 (04): : 294 - 298
  • [50] RETHINKING BACKGROUND AND FOREGROUND IN DEEP NEURAL NETWORK-BASED BACKGROUND SUBTRACTION
    Minematsu, Tsubasa
    Shimoda, Atsushi
    Taniguchi, Rin-ichiro
    2020 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2020, : 3229 - 3233