A neural network for beam background decomposition in Belle II at SuperKEKB

被引:0
|
作者
Schwenker, B. [1 ]
Herzberg, L. [1 ]
Buch, Y. [1 ]
Frey, A. [1 ]
Natochii, A. [2 ]
Vahsen, S. [2 ]
Nakayama, H. [3 ,4 ]
机构
[1] Georg August Univ Gottingen, Phys Inst 2, D-37073 Gottingen, Germany
[2] Univ Hawaii, Honolulu, HI 96822 USA
[3] High Energy Accelerator Res Org KEK, Tsukuba 3050801, Japan
[4] Grad Univ Adv Studies, SOKENDAI, Hayama 2400193, Japan
来源
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT | 2023年 / 1049卷
关键词
Belle II; SuperKEKB; Beam background; Neural networks; Nonlinear regression; Machine learning for accelerators;
D O I
10.1016/j.nima.2023.168112
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
We describe a neural network for predicting the background hit rate in the Belle II detector produced by the SuperKEKB electron-positron collider. The neural network, BGNet, learns to predict the individual contributions of different physical background sources, such as beam-gas scattering or continuous top-up injections into the collider, to Belle II sub-detector rates. The samples for learning are archived 1 Hz time series of diagnostic variables from the SuperKEKB collider subsystems and measured hit rates of Belle II used as regression targets. We test the learned model by predicting detector hit rates on archived data from different run periods not used during training. We show that a feature attribution method can help interpret the source of changes in the background level over time.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] A neural network z-vertex trigger for Belle II
    Neuhaus, S.
    Skambraks, S.
    Abudinen, F.
    Chen, Y.
    Feindt, M.
    Fruehwirth, R.
    Heck, M.
    Kiesling, C.
    Knoll, A.
    Paul, S.
    Schieck, J.
    16TH INTERNATIONAL WORKSHOP ON ADVANCED COMPUTING AND ANALYSIS TECHNIQUES IN PHYSICS RESEARCH (ACAT2014), 2015, 608
  • [22] Performance of the Belle II calorimeter trigger system at the SuperKEKB Phase 3 run
    Unno, Y.
    Kim, C. H.
    Cho, H. E.
    Cheon, B. G.
    Kim, S. H.
    Lee, I. S.
    Kim, Y. J.
    Jang, E. J.
    Choi, S-K
    Iwasaki, Y.
    Koga, T.
    Nakazawa, H.
    Kuzmin, A.
    JOURNAL OF INSTRUMENTATION, 2020, 15 (09):
  • [23] Network in Belle II
    Pardi, Silvio
    24TH INTERNATIONAL CONFERENCE ON COMPUTING IN HIGH ENERGY AND NUCLEAR PHYSICS (CHEP 2019), 2020, 245
  • [24] The Belle-II DEPFET pixel detector: A step forward in vertexing in the superKEKB flavour factory
    Marinas, C.
    Vos, M.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2011, 650 (01): : 59 - 63
  • [25] A Convolution Neural Network Based Displaced Vertex Trigger for the Belle II Experiment
    Unger, Kai
    Becker, Juergen
    Kiesling, Christian
    Ma, Yichuan
    Meggendorfer, Felix
    Neu, Marc
    Schmidt, Elia
    Zweigart, Ulrike
    APPLIED RECONFIGURABLE COMPUTING. ARCHITECTURES, TOOLS, AND APPLICATIONS, ARC 2023, 2023, 14251 : 173 - 184
  • [26] A neural network on FPGAs for the z-vertex track trigger in Belle II
    Baehr, S.
    Skambraks, S.
    Neuhaus, S.
    Kiesling, C.
    Becker, J.
    JOURNAL OF INSTRUMENTATION, 2017, 12
  • [27] A Convolution Neural Network Based Displaced Vertex Trigger for the Belle II Experiment
    Unger, Kai
    Becker, Jürgen
    Kiesling, Christian
    Ma, Yichuan
    Meggendorfer, Felix
    Neu, Marc
    Schmidt, Elia
    Zweigart, Ulrike
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2023, 14251 LNCS : 173 - 184
  • [28] Selective background Monte Carlo simulation at Belle II
    Kahn, James
    Kuhr, Thomas
    Ritter, Martin
    19TH INTERNATIONAL WORKSHOP ON ADVANCED COMPUTING AND ANALYSIS TECHNIQUES IN PHYSICS RESEARCH, 2020, 1525
  • [29] Selective background Monte Carlo simulation at Belle II
    Kahn, James
    Dorigatti, Emilio
    Lieret, Kilian
    Lindner, Andreas
    Kuhr, Thomas
    24TH INTERNATIONAL CONFERENCE ON COMPUTING IN HIGH ENERGY AND NUCLEAR PHYSICS (CHEP 2019), 2020, 245
  • [30] The neural network first-level hardware track trigger of the Belle II experiment
    Baehr, S.
    Bae, H.
    Becker, J.
    Bertemes, M.
    Campajola, M.
    Ferber, T.
    Forsthofer, T.
    Hiesl, S.
    Inguglia, G.
    Iwasaki, Y.
    Juelg, T.
    Kiesling, C.
    Knoll, A. C.
    Koga, T.
    Lai, Y. -t.
    Lenz, A.
    Liu, Y.
    Meggendorfer, F.
    Nakazawa, H.
    Neu, M.
    Schieck, J.
    Schmidt, E.
    Shiu, J. -g.
    Skambraks, S.
    Unger, K.
    Yin, J.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2025, 1073