A neural network for beam background decomposition in Belle II at SuperKEKB

被引:0
|
作者
Schwenker, B. [1 ]
Herzberg, L. [1 ]
Buch, Y. [1 ]
Frey, A. [1 ]
Natochii, A. [2 ]
Vahsen, S. [2 ]
Nakayama, H. [3 ,4 ]
机构
[1] Georg August Univ Gottingen, Phys Inst 2, D-37073 Gottingen, Germany
[2] Univ Hawaii, Honolulu, HI 96822 USA
[3] High Energy Accelerator Res Org KEK, Tsukuba 3050801, Japan
[4] Grad Univ Adv Studies, SOKENDAI, Hayama 2400193, Japan
来源
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT | 2023年 / 1049卷
关键词
Belle II; SuperKEKB; Beam background; Neural networks; Nonlinear regression; Machine learning for accelerators;
D O I
10.1016/j.nima.2023.168112
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
We describe a neural network for predicting the background hit rate in the Belle II detector produced by the SuperKEKB electron-positron collider. The neural network, BGNet, learns to predict the individual contributions of different physical background sources, such as beam-gas scattering or continuous top-up injections into the collider, to Belle II sub-detector rates. The samples for learning are archived 1 Hz time series of diagnostic variables from the SuperKEKB collider subsystems and measured hit rates of Belle II used as regression targets. We test the learned model by predicting detector hit rates on archived data from different run periods not used during training. We show that a feature attribution method can help interpret the source of changes in the background level over time.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Operational experience and performance of the Belle II silicon vertex detector after the first SuperKEKB long shutdown
    Otani, F.
    Adamczyk, K.
    Aihara, H.
    Bacher, S.
    Bahinipati, S.
    Baudot, J.
    Behera, P. K.
    Bettarini, S.
    Bilka, T.
    Bozek, A.
    Buchsteiner, F.
    Casarosa, G.
    Corona, L.
    Das, S. B.
    Dujany, G.
    Finck, C.
    Forti, F.
    Friedl, M.
    Gabrielli, A.
    Gobbo, B.
    Halder, S.
    Hara, K.
    Hazra, S.
    Higuchi, T.
    Irmler, C.
    Ishikawa, A.
    Kaleta, M.
    Kaliyar, A. B.
    Kang, K. H.
    Kohriki, T.
    Kumar, R.
    Lalwani, K.
    Lautenbach, K.
    Leboucher, R.
    Libby, J.
    Martel, L.
    Massaccesi, L.
    Mohanty, G. B.
    Mondal, S.
    Nakamura, K. R.
    Natkaniec, Z.
    Onuki, Y.
    Paladino, A.
    Paoloni, E.
    Rao, K. K.
    Ravindran, K.
    Ripp-Baudot, I.
    Rizzo, G.
    Sato, Y.
    Schwanda, C.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2024, 1067
  • [32] Generation of Belle II Pixel Detector Background Data with a GAN
    Srebre, Matej
    Schmolz, Pascal
    Hashemi, Hosein
    Ritter, Martin
    Kuhr, Thomas
    24TH INTERNATIONAL CONFERENCE ON COMPUTING IN HIGH ENERGY AND NUCLEAR PHYSICS (CHEP 2019), 2020, 245
  • [33] The Belle II Pixel Detector Data Acquisition and Background Suppression System
    Lautenbacha, K.
    Deschamps, B.
    Dingfelder, J.
    Getzkow, D.
    Gessler, T.
    Konorov, I.
    Kuehn, W.
    Lange, S.
    Levit, D.
    Liu, Z. -A.
    Marinas, C.
    Muenchow, D.
    Rabusov, A.
    Reiter, S.
    Spruck, B.
    Wessels, C.
    Zhao, J.
    JOURNAL OF INSTRUMENTATION, 2017, 12
  • [34] DIAMOND DETECTORS FOR RADIATION MONITORING AND BEAM ABORT AT BELLE II
    Manfredi, Riccardo
    ACTA PHYSICA POLONICA B, 2020, 51 (06): : 1473 - 1478
  • [35] The Belle II diamond detector for radiation monitoring and beam abort
    Jin, Y.
    Adamczyk, K.
    Aihara, H.
    Aziz, T.
    Bacher, S.
    Bahinipati, S.
    Batignani, G.
    Baudot, J.
    Behera, P.K.
    Bettarini, S.
    Bilka, T.
    Bozek, A.
    Buchsteiner, F.
    Casarosa, G.
    Cervenkov, D.
    Chen, Y.Q.
    Corona, L.
    Czank, T.
    Das, S.B.
    Dash, N.
    de Marino, G.
    Doležal, Z.
    Dujany, G.
    Forti, F.
    Friedl, M.
    Ganiev, E.
    Gobbo, B.
    Halder, S.
    Hara, K.
    Hazra, S.
    Higuchi, T.
    Irmler, C.
    Ishikawa, A.
    Jeon, H.B.
    Joo, C.
    Kaleta, M.
    Kaliyar, A.B.
    Kandra, J.
    Kang, K.H.
    Kapusta, P.
    Kodyš, P.
    Kohriki, T.
    Kumar, M.
    Kumar, R.
    Kvasnicka, P.
    la Licata, C.
    Lalwani, K.
    Lee, S.C.
    Li, Y.B.
    Libby, J.
    Proceedings of Science, 2021, 390
  • [36] The beam test measurements of the Belle II vertex detector modules
    Bilka, T.
    JOURNAL OF INSTRUMENTATION, 2017, 12
  • [37] LU decomposition and Toeplitz decomposition of a neural network
    Liu, Yucong
    Jiao, Simiao
    Lim, Lek-Heng
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2024, 68
  • [38] Performance of the Belle II aerogel-based ring-imaging Cherenkov counter system in SuperKEKB 2019 phase 3 operation
    Lai, Y-T
    Adachi, I
    Burmistrov, L.
    Furui, K.
    Iijima, T.
    Iwata, S.
    Giordano, R.
    Kakuno, H.
    Karyan, G.
    Kawai, H.
    Kawasaki, T.
    Kindo, H.
    Kitamura, H.
    Kobayashi, M.
    Kohriki, T.
    Konno, T.
    Korpar, S.
    Krizan, P.
    Kumita, T.
    Kuze, K.
    Nazaryan, G.
    Nishida, S.
    Nishimura, M.
    Ogawa, K.
    Ogawa, S.
    Pestotnik, R.
    Santelj, L.
    Shoji, M.
    Sumiyoshi, T.
    Tabata, M.
    Tsurufuji, M.
    Waheed, E.
    Yonenaga, M.
    Yusa, Y.
    JOURNAL OF INSTRUMENTATION, 2020, 15 (07):
  • [39] Photon Reconstruction in the Belle II Calorimeter Using Graph Neural Networks
    Wemmer F.
    Haide I.
    Eppelt J.
    Ferber T.
    Beaubien A.
    Branchini P.
    Campajola M.
    Cecchi C.
    Cheema P.
    De Nardo G.
    Hearty C.
    Kuzmin A.
    Longo S.
    Manoni E.
    Meier F.
    Merola M.
    Miyabayashi K.
    Moneta S.
    Remnev M.
    Roney J.M.
    Shiu J.-G.
    Shwartz B.
    Unno Y.
    van Tonder R.
    Volpe R.
    Computing and Software for Big Science, 2023, 7 (1)
  • [40] Lagrangian Decomposition for Neural Network Verification
    Bunel, Rudy
    De Palma, Alessandro
    Desmaison, Alban
    Dvijotham, Krishnamurthy
    Kohli, Pushmeet
    Torr, Philip H. S.
    Kumar, M. Pawan
    CONFERENCE ON UNCERTAINTY IN ARTIFICIAL INTELLIGENCE (UAI 2020), 2020, 124 : 370 - 379