Assessing the impact of climatic factors on dengue fever transmission in Bangladesh

被引:0
|
作者
Miah, Md. Mamun [1 ]
Hossain, Mohammad Belal [2 ,3 ]
Jannat, Sumiya Nur [1 ]
Karim, Md. Rezaul [4 ]
Rahman, Md. Rashedur [1 ]
Arafat, Yasin [1 ]
Pingki, Farjana Haque [2 ]
机构
[1] Noakhali Sci & Technol Univ, Dept Stat, Noakhali 3814, Bangladesh
[2] Noakhali Sci & Technol Univ, Dept Fisheries & Marine Sci, Noakhali 3814, Bangladesh
[3] Griffith Univ, Sch Engn & Built Environm, Brisbane, Qld 4111, Australia
[4] Jahangirnagar Univ, Dept Stat, Dhaka 1342, Bangladesh
关键词
Dengue fever; Environmental factors; Negative binomial regression; AEDES-AEGYPTI; METEOROLOGICAL FACTORS; TEMPERATURE; MODEL; VARIABLES; EPIDEMIC; WEATHER; DISEASE; VECTOR; DHAKA;
D O I
10.1007/s10453-024-09814-0
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Dengue fever is a virus-borne disease spread by mosquitos, and its global prevalence has risen significantly in recent years. The aim of this study was to analyze the impact and association of climatic factors on the spread of dengue incidence in Bangladesh. From January 2011 to December 2021, the study used secondary data on monthly dengue cases and the monthly average of climatic factors. In addition to the descriptive statistics, bivariate analyses of Kendall's tau-b and Spearman's rho have been performed for measuring the association of climatic factors on dengue infection. The generalized linear negative binomial regression model with and without lag was applied to evaluate the impacts of climatic factors on dengue transmission. Results of goodness of fit statistics (AIC,BIC,anddeviance)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(AIC, BIC, and deviance)$$\end{document} showed that NBR model with one month lag best fitted to our data. The model findings revealed that temperature (IRR:1.223,95%CI:1.089-1.374)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(IRR:1.223, 95\% CI:1.089-1.374)$$\end{document}, humidity (IRR:1.131,95%CI:1.103-1.159)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(IRR:1.131, 95\% CI:1.103-1.159)$$\end{document}, precipitation (IRR:1.158,95%CI:1.072-1.253)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(IRR:1.158, 95\% CI:1.072-1.253)$$\end{document}, and air pressure (IRR:5.279,95%CI:1.411-19.046)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(IRR:5.279, 95\% CI:1.411-19.046)$$\end{document} were significantly positively influenced the spread of dengue incidence in Bangladesh. Additionally, dengue fever cases are anticipated to rise by 1.223, 1.131, 1.158, and 5.279 times, respectively, for the everyone-unit increase in the monthly average mean temperature, humidity, precipitation, and air pressure range. The findings on the epidemiological trends of the dengue epidemic and weather changes may interest policymakers and health officials.
引用
收藏
页码:233 / 245
页数:13
相关论文
共 50 条
  • [41] The Role of Vertical Transmission in the Control of Dengue Fever
    Murillo, David
    Murillo, Anarina
    Lee, Sunmi
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2019, 16 (05)
  • [42] A benchmark dataset for analyzing hematological responses to dengue fever in Bangladesh
    Assaduzzaman, Md.
    Islam, Oahidul
    Nirob, Md. Asraful Sharker
    Mim, Md. Minhajul Hayat
    Mahmud, Arif
    DATA IN BRIEF, 2024, 57
  • [43] Additional considerations for assessing COVID-19 impact on dengue transmission Reply
    Brady, Oliver J.
    Tian, Huaiyu
    LANCET INFECTIOUS DISEASES, 2022, 22 (06): : 763 - 763
  • [44] Risk factors for shock in dengue fever
    Joob, Beuy
    Wiwanitkit, Viroj
    INDIAN JOURNAL OF CRITICAL CARE MEDICINE, 2016, 20 (02) : 131 - +
  • [45] MAPPING GLOBAL VARIATION IN DENGUE TRANSMISSION INTENSITY AND ASSESSING THE IMPACT OF CONTROL STRATEGIES
    Cattarino, Lorenzo
    Rodriguez-Barraquer, Isabel
    Cummings, Derek
    Imai, Natsuko
    Ferguson, Neil
    AMERICAN JOURNAL OF TROPICAL MEDICINE AND HYGIENE, 2017, 97 (05): : 193 - 193
  • [46] Assessing impacts of climatic variations on foodgrain production in Bangladesh
    Karim, Z
    Hussain, SG
    Ahmed, M
    WATER AIR AND SOIL POLLUTION, 1996, 92 (1-2): : 53 - 62
  • [47] Risk factors associated with an outbreak of dengue fever/dengue haemorrhagic fever in Hanoi, Vietnam
    Toan, D. T. T.
    Hoat, L. N.
    Hu, W.
    Wright, P.
    Martens, P.
    EPIDEMIOLOGY AND INFECTION, 2015, 143 (08): : 1594 - 1598
  • [48] Community perspectives on dengue transmission in the city of Dhaka, Bangladesh
    Dhar-Chowdhury, Pernali
    Haque, C. Emdad
    Driedger, S. Michelle
    Hossain, Shakhawat
    INTERNATIONAL HEALTH, 2014, 6 (04): : 306 - 316
  • [49] ASSESSING THE EFFECTS OF TEMPERATURE AND DENGUE VIRUS LOAD ON DENGUE TRANSMISSION
    Esteva, Lourdes
    Yang, Hyun Mo
    JOURNAL OF BIOLOGICAL SYSTEMS, 2015, 23 (04) : 527 - 554
  • [50] Association between dengue incidence and climatic factors
    Ribeiro, Andressa F.
    Marques, Gisela R. A. M.
    Voltolini, Julio C.
    Condino, Maria Lucia F.
    REVISTA DE SAUDE PUBLICA, 2006, 40 (04): : 671 - 676