Assessing the impact of climatic factors on dengue fever transmission in Bangladesh

被引:0
|
作者
Miah, Md. Mamun [1 ]
Hossain, Mohammad Belal [2 ,3 ]
Jannat, Sumiya Nur [1 ]
Karim, Md. Rezaul [4 ]
Rahman, Md. Rashedur [1 ]
Arafat, Yasin [1 ]
Pingki, Farjana Haque [2 ]
机构
[1] Noakhali Sci & Technol Univ, Dept Stat, Noakhali 3814, Bangladesh
[2] Noakhali Sci & Technol Univ, Dept Fisheries & Marine Sci, Noakhali 3814, Bangladesh
[3] Griffith Univ, Sch Engn & Built Environm, Brisbane, Qld 4111, Australia
[4] Jahangirnagar Univ, Dept Stat, Dhaka 1342, Bangladesh
关键词
Dengue fever; Environmental factors; Negative binomial regression; AEDES-AEGYPTI; METEOROLOGICAL FACTORS; TEMPERATURE; MODEL; VARIABLES; EPIDEMIC; WEATHER; DISEASE; VECTOR; DHAKA;
D O I
10.1007/s10453-024-09814-0
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Dengue fever is a virus-borne disease spread by mosquitos, and its global prevalence has risen significantly in recent years. The aim of this study was to analyze the impact and association of climatic factors on the spread of dengue incidence in Bangladesh. From January 2011 to December 2021, the study used secondary data on monthly dengue cases and the monthly average of climatic factors. In addition to the descriptive statistics, bivariate analyses of Kendall's tau-b and Spearman's rho have been performed for measuring the association of climatic factors on dengue infection. The generalized linear negative binomial regression model with and without lag was applied to evaluate the impacts of climatic factors on dengue transmission. Results of goodness of fit statistics (AIC,BIC,anddeviance)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(AIC, BIC, and deviance)$$\end{document} showed that NBR model with one month lag best fitted to our data. The model findings revealed that temperature (IRR:1.223,95%CI:1.089-1.374)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(IRR:1.223, 95\% CI:1.089-1.374)$$\end{document}, humidity (IRR:1.131,95%CI:1.103-1.159)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(IRR:1.131, 95\% CI:1.103-1.159)$$\end{document}, precipitation (IRR:1.158,95%CI:1.072-1.253)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(IRR:1.158, 95\% CI:1.072-1.253)$$\end{document}, and air pressure (IRR:5.279,95%CI:1.411-19.046)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(IRR:5.279, 95\% CI:1.411-19.046)$$\end{document} were significantly positively influenced the spread of dengue incidence in Bangladesh. Additionally, dengue fever cases are anticipated to rise by 1.223, 1.131, 1.158, and 5.279 times, respectively, for the everyone-unit increase in the monthly average mean temperature, humidity, precipitation, and air pressure range. The findings on the epidemiological trends of the dengue epidemic and weather changes may interest policymakers and health officials.
引用
收藏
页码:233 / 245
页数:13
相关论文
共 50 条
  • [21] A combination of COVID-19 and dengue fever in Bangladesh: Preparedness of Bangladesh
    Chowdhury, Promit Barua
    Hossain, Sorif
    Biswas, Raaj Kishore
    JOURNAL OF GLOBAL HEALTH, 2020, 10 (02) : 1 - 3
  • [22] Impact of climatic and non-climatic factors on shrimp production: Empirical evidence from Bangladesh
    Khan, Md. Akhtaruzzaman
    Nielsen, Rasmus
    Nielsen, Max
    Hossain, Md. Emran
    AQUACULTURE ECONOMICS & MANAGEMENT, 2024, 28 (03) : 439 - 459
  • [23] Assessing the influencing factors of dengue fever in Chinese mainland based on causal analysis
    Xingyuan Yu
    Xia Wang
    Sanyi Tang
    Scientific Reports, 15 (1)
  • [24] Results obtained in the transmission of dengue fever
    Siler, JF
    Hall, MW
    Hitchens, AP
    JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 1925, 84 : 1163 - 1172
  • [25] Transmission Dinamics Model Of Dengue Fever
    Debora
    Rendy
    Rahmi
    4TH INTERNATIONAL CONFERENCE ON OPERATIONAL RESEARCH (INTERIOR), 2018, 300
  • [26] Dengue fever outbreak in a recreation club, Dhaka, Bangladesh
    Wagatsuma, Y
    Breiman, RF
    Hossain, A
    Rahman, M
    EMERGING INFECTIOUS DISEASES, 2004, 10 (04) : 747 - 750
  • [27] Space-time clusters of dengue fever in Bangladesh
    Banu, Shahera
    Hu, Wenbiao
    Hurst, Cameron
    Guo, Yuming
    Islam, Mohammad Zahirul
    Tong, Shilu
    TROPICAL MEDICINE & INTERNATIONAL HEALTH, 2012, 17 (09) : 1086 - 1091
  • [28] Dengue fever mapping in Bangladesh: A spatial modeling approach
    Sarker, Indrani
    Karim, Md. Rezaul
    E-Barket, Sefat
    Hasan, Mehedi
    HEALTH SCIENCE REPORTS, 2024, 7 (06)
  • [29] The climatic factors affecting dengue fever outbreaks in southern Taiwan: an application of symbolic data analysis
    Lai, Yi-Horng
    BIOMEDICAL ENGINEERING ONLINE, 2018, 17
  • [30] The climatic factors affecting dengue fever outbreaks in southern Taiwan: an application of symbolic data analysis
    Yi-Horng Lai
    BioMedical Engineering OnLine, 17