Assessing the impact of climatic factors on dengue fever transmission in Bangladesh

被引:0
|
作者
Miah, Md. Mamun [1 ]
Hossain, Mohammad Belal [2 ,3 ]
Jannat, Sumiya Nur [1 ]
Karim, Md. Rezaul [4 ]
Rahman, Md. Rashedur [1 ]
Arafat, Yasin [1 ]
Pingki, Farjana Haque [2 ]
机构
[1] Noakhali Sci & Technol Univ, Dept Stat, Noakhali 3814, Bangladesh
[2] Noakhali Sci & Technol Univ, Dept Fisheries & Marine Sci, Noakhali 3814, Bangladesh
[3] Griffith Univ, Sch Engn & Built Environm, Brisbane, Qld 4111, Australia
[4] Jahangirnagar Univ, Dept Stat, Dhaka 1342, Bangladesh
关键词
Dengue fever; Environmental factors; Negative binomial regression; AEDES-AEGYPTI; METEOROLOGICAL FACTORS; TEMPERATURE; MODEL; VARIABLES; EPIDEMIC; WEATHER; DISEASE; VECTOR; DHAKA;
D O I
10.1007/s10453-024-09814-0
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Dengue fever is a virus-borne disease spread by mosquitos, and its global prevalence has risen significantly in recent years. The aim of this study was to analyze the impact and association of climatic factors on the spread of dengue incidence in Bangladesh. From January 2011 to December 2021, the study used secondary data on monthly dengue cases and the monthly average of climatic factors. In addition to the descriptive statistics, bivariate analyses of Kendall's tau-b and Spearman's rho have been performed for measuring the association of climatic factors on dengue infection. The generalized linear negative binomial regression model with and without lag was applied to evaluate the impacts of climatic factors on dengue transmission. Results of goodness of fit statistics (AIC,BIC,anddeviance)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(AIC, BIC, and deviance)$$\end{document} showed that NBR model with one month lag best fitted to our data. The model findings revealed that temperature (IRR:1.223,95%CI:1.089-1.374)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(IRR:1.223, 95\% CI:1.089-1.374)$$\end{document}, humidity (IRR:1.131,95%CI:1.103-1.159)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(IRR:1.131, 95\% CI:1.103-1.159)$$\end{document}, precipitation (IRR:1.158,95%CI:1.072-1.253)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(IRR:1.158, 95\% CI:1.072-1.253)$$\end{document}, and air pressure (IRR:5.279,95%CI:1.411-19.046)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(IRR:5.279, 95\% CI:1.411-19.046)$$\end{document} were significantly positively influenced the spread of dengue incidence in Bangladesh. Additionally, dengue fever cases are anticipated to rise by 1.223, 1.131, 1.158, and 5.279 times, respectively, for the everyone-unit increase in the monthly average mean temperature, humidity, precipitation, and air pressure range. The findings on the epidemiological trends of the dengue epidemic and weather changes may interest policymakers and health officials.
引用
收藏
页码:233 / 245
页数:13
相关论文
共 50 条
  • [31] Additional considerations for assessing COVID-19 impact on dengue transmission
    Yek, Christina
    Pacheco, Andrea R.
    Lon, Chanthap
    Leang, Rithea
    Manning, Jessica E.
    LANCET INFECTIOUS DISEASES, 2022, 22 (06): : 762 - 763
  • [32] Simulations and fractional modeling of dengue transmission in Bangladesh
    Akter, Saima
    Jin, Zhen
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (06) : 9891 - 9922
  • [33] Impact of incubation delay and stochastic perturbation on Dengue fever virus transmission model
    Nie, Lin-Fei
    Zhou, Yu
    Hu, Lin
    APPLICABLE ANALYSIS, 2023, 102 (12) : 3243 - 3271
  • [34] Seasonal Distribution and Climatic Correlates of Dengue Disease in Dhaka, Bangladesh
    Morales, Ivonne
    Salje, Henrik
    Saha, Samir
    Gurley, Emily S.
    AMERICAN JOURNAL OF TROPICAL MEDICINE AND HYGIENE, 2016, 94 (06): : 1359 - 1361
  • [35] Differences in the Transmission of Dengue Fever by Different Serotypes of Dengue Virus
    Niu, Cong
    Huang, Yalan
    Wang, Miao
    Huang, Dana
    Li, Jia
    Huang, Suibin
    Yang, Fan
    Wan, Chengsong
    Zhang, Renli
    VECTOR-BORNE AND ZOONOTIC DISEASES, 2020, 20 (02) : 143 - 150
  • [36] Population genetics of dengue virus and transmission of dengue fever.
    Falcon-Lezama, Jorge
    Guadalupe Sanchez-Burgos, Gilma
    Ramos-Castaneda, Jose
    SALUD PUBLICA DE MEXICO, 2009, 51 : S403 - S409
  • [37] Factors Predicting Severe Dengue in Patients with Dengue Fever
    Khan, Muhammad Imran Hasan
    Anwar, Eram
    Agha, Adnan
    Hassanien, Noha Saleh Mohamed
    Ullah, Ehsan
    Syed, Imran Ali
    Raja, Arsalan
    MEDITERRANEAN JOURNAL OF HEMATOLOGY AND INFECTIOUS DISEASES, 2013, 5 (01):
  • [38] Impact of dengue/dengue hemorrhagic fever on the developing world
    Gubler, DJ
    Meltzer, M
    ADVANCES IN VIRUS RESEARCH, VOL 53, 1999, 53 : 35 - 70
  • [39] Spatial mapping of dengue fever prevalence and its association with geo-climatic factors in Lahore, Pakistan
    Rehman, Wafa
    Nasar-u-Minallah, Muhammad
    Butt, Ibtisam
    ENVIRONMENTAL MONITORING AND ASSESSMENT, 2024, 196 (09)
  • [40] Assessing the effects of temperature on dengue transmission
    Yang, H. M.
    Macoris, M. L. G.
    Galvani, K. C.
    Andrighetti, M. T. M.
    Wanderley, D. M. V.
    EPIDEMIOLOGY AND INFECTION, 2009, 137 (08): : 1179 - 1187