A Blockchain-Based Model Migration Approach for Secure and Sustainable Federated Learning in IoT Systems

被引:31
|
作者
Zhang, Cheng [1 ]
Xu, Yang [1 ]
Elahi, Haroon [2 ]
Zhang, Deyu [3 ]
Tan, Yunlin [1 ]
Chen, Junxian [1 ]
Zhang, Yaoxue [1 ]
机构
[1] Hunan Univ, Coll Comp Sci & Elect Engn, Changsha 410082, Peoples R China
[2] Umea Univ, Dept Comp Sci, S-90187 Umea, Sweden
[3] Cent South Univ, Sch Comp Sci & Engn, Changsha 410083, Peoples R China
基金
中国国家自然科学基金;
关键词
Collaborative work; Training; Blockchains; Computational modeling; Data models; Servers; Costs; Blockchain; federated learning; Internet of Things (IoT); security; sustainable computing; training acceleration; INTERNET; THINGS;
D O I
10.1109/JIOT.2022.3171926
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Model migration can accelerate model convergence during federated learning on the Internet of Things (IoT) devices and reduce training costs by transferring feature extractors from fast to slow devices, which, in turn, enables sustainable computing. However, malicious or lazy devices may migrate the fake models or resist sharing models for their benefit, reducing the desired efficiency and reliability of a federated learning system. To this end, this work presents a blockchain-based model migration approach for resource-constrained IoT systems. The proposed approach aims to achieve secure model migration and speed up model training while minimizing computation cost. We first develop an incentive mechanism considering the economic benefits of fast devices, which breaks the Nash equilibrium established by lazy devices and encourages capable devices to train and share models. Second, we design a clustering-based algorithm for identifying malicious devices and preventing them from defrauding incentives. Third, we use blockchain to ensure trustworthiness in model migration and incentive processes. Blockchain records the interaction between the central server and IoT devices and runs the incentive algorithm without exposing the devices' private data. Theoretical analysis and experimental results show that the proposed approach can accelerate federated learning rates, reduce model training computation costs to increase sustainability, and resist malicious attacks.
引用
收藏
页码:6574 / 6585
页数:12
相关论文
共 50 条
  • [41] HBFL: A hierarchical blockchain-based federated learning framework for collaborative IoT intrusion detection
    Sarhan, Mohanad
    Lo, Wai Weng
    Layeghy, Siamak
    Portmann, Marius
    COMPUTERS & ELECTRICAL ENGINEERING, 2022, 103
  • [42] Blockchain-Based Federated Learning: A Systematic Survey
    Huang, Junqin
    Kong, Linghe
    Chen, Guihai
    Xiang, Qiao
    Chen, Xi
    Liu, Xue
    IEEE NETWORK, 2023, 37 (06): : 150 - 157
  • [43] An Robust Secure Blockchain-Based Hierarchical Asynchronous Federated Learning Scheme for Internet of Things
    Chen, Yonghui
    Yan, Linglong
    Ai, Daxiang
    IEEE ACCESS, 2024, 12 : 165280 - 165297
  • [44] Secure and Scalable Blockchain-Based Federated Learning for Cryptocurrency Fraud Detection: A Systematic Review
    Ahmed, Ahmed Abdelmoamen
    Alabi, Oluwayemisi O.
    IEEE ACCESS, 2024, 12 : 102219 - 102241
  • [45] BFL-SA: Blockchain-based federated learning via enhanced secure aggregation
    Liu, Yizhong
    Jia, Zixiao
    Jiang, Zixu
    Lin, Xun
    Liu, Jianwei
    Wu, Qianhong
    Susilo, Willy
    JOURNAL OF SYSTEMS ARCHITECTURE, 2024, 152
  • [46] Optimizing Heterogeneity in IoT Infra Using Federated Learning and Blockchain-based Security Strategies
    Muthukumaran, V.
    Sivakami, R.
    Venkatesan, V. K.
    Balajee., J.
    Mahesh, T. R.
    Mohan, E.
    Swapna, B.
    INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL, 2023, 18 (06)
  • [47] ESB-FL: Efficient and Secure Blockchain-Based Federated Learning With Fair Payment
    Chen, Biwen
    Zeng, Honghong
    Xiang, Tao
    Guo, Shangwei
    Zhang, Tianwei
    Liu, Yang
    IEEE TRANSACTIONS ON BIG DATA, 2024, 10 (06) : 761 - 774
  • [48] BPS-FL: Blockchain-Based Privacy-Preserving and Secure Federated Learning
    Yu, Jianping
    Yao, Hang
    Ouyang, Kai
    Cao, Xiaojun
    Zhang, Lianming
    BIG DATA MINING AND ANALYTICS, 2025, 8 (01): : 189 - 213
  • [49] Implementation Framework for a Blockchain-Based Federated Learning Model for Classification Problems
    Mahmood, Zeba
    Jusas, Vacius
    SYMMETRY-BASEL, 2021, 13 (07):
  • [50] BRFL: A blockchain-based byzantine-robust federated learning model
    Li, Yang
    Xia, Chunhe
    Li, Chang
    Wang, Tianbo
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2025, 196