ESB-FL: Efficient and Secure Blockchain-Based Federated Learning With Fair Payment

被引:7
|
作者
Chen, Biwen [1 ,2 ,3 ]
Zeng, Honghong [1 ]
Xiang, Tao [1 ]
Guo, Shangwei [1 ]
Zhang, Tianwei [4 ]
Liu, Yang [4 ]
机构
[1] Chongqing Univ, Coll Comp Sci, Chongqing 400044, Peoples R China
[2] State Key Lab Cryptol, Beijing 100878, Peoples R China
[3] Guilin Univ Elect Technol, Guangxi Key Lab Trusted Software, Guilin 541004, Peoples R China
[4] Nanyang Technol Univ, Sch Comp Sci & Engn, Singapore 639798, Singapore
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Task analysis; Blockchains; Privacy; Data privacy; Computational modeling; Encryption; Training; Blockchain; fair payment; federated learning; function encryption; privacy protection; INFERENCE; INTERNET;
D O I
10.1109/TBDATA.2022.3177170
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Federated learning (FL) is a technique that enables multiple parties to collaboratively train a model without sharing raw private data, and it is ideal for smart healthcare. However, it raises new privacy concerns due to the risk of privacy-sensitive medical data leakage. It is not until recently that the privacy-preserving FL (PPFL) has been introduced as a solution to ensure the privacy of training processes. Unfortunately, most existing PPFL schemes are highly dependent on complex cryptographic mechanisms or fail to guarantee the accuracy of training models. Besides, there has been little research on the fairness of the payment procedure in the PPFL with incentive mechanisms. To address the above concerns, we first construct an efficient non-interactive designated decryptor function encryption (NDD-FE) scheme to protect the privacy of training data while maintaining high communication performance. We then propose a blockchain-based PPFL framework with fair payment for medical image detection, namely ESB-FL, by combining the NDD-FE and an elaborately designed blockchain. ESB-FL not only inherits the characteristics of the NDD-FE scheme, but it also ensures the interests of each participant. We finally conduct extensive security analysis and experiments to show that our new framework has enhanced security, good accuracy, and high efficiency.
引用
收藏
页码:761 / 774
页数:14
相关论文
共 50 条
  • [1] A Blockchain-based federated learning framework for secure aggregation and fair incentives
    Yang, XiaoHui
    Li, TianChang
    CONNECTION SCIENCE, 2024, 36 (01)
  • [2] Secure and Efficient Blockchain-Based Federated Learning Approach for VANETs
    Asad, Muhammad
    Shaukat, Saima
    Javanmardi, Ehsan
    Nakazato, Jin
    Bao, Naren
    Tsukada, Manabu
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (05): : 9047 - 9055
  • [3] BPS-FL: Blockchain-Based Privacy-Preserving and Secure Federated Learning
    Yu, Jianping
    Yao, Hang
    Ouyang, Kai
    Cao, Xiaojun
    Zhang, Lianming
    BIG DATA MINING AND ANALYTICS, 2025, 8 (01): : 189 - 213
  • [4] BASS: A Blockchain-Based Asynchronous SignSGD Architecture for Efficient and Secure Federated Learning
    Xu, Chenhao
    Ge, Jiaqi
    Deng, Yao
    Gao, Longxiang
    Zhang, Mengshi
    Li, Yong
    Zhou, Wanlei
    Zheng, Xi
    IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2024, 21 (06) : 5388 - 5402
  • [5] Blockchain-based Secure Client Selection in Federated Learning
    Nguyen, Truc
    Thai, Phuc
    Jeter, Tre R.
    Dinht, Thang N.
    Thai, My T.
    2022 IEEE INTERNATIONAL CONFERENCE ON BLOCKCHAIN AND CRYPTOCURRENCY (IEEE ICBC 2022), 2022,
  • [6] FGFL: A blockchain-based fair incentive governor for Federated Learning
    Gao, Liang
    Li, Li
    Chen, Yingwen
    Xu, ChengZhong
    Xu, Ming
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2022, 163 : 283 - 299
  • [7] Blockchain-based searchable encryption with efficient result verification and fair payment
    Li, Haiyu
    Wang, Tao
    Qiao, Zirui
    Yang, Bo
    Gong, Yueyang
    Wang, Jingyi
    Qiu, Guoyong
    JOURNAL OF INFORMATION SECURITY AND APPLICATIONS, 2021, 58
  • [8] Time-Efficient Blockchain-Based Federated Learning
    Lin, Rongping
    Wang, Fan
    Luo, Shan
    Wang, Xiong
    Zukerman, Moshe
    IEEE-ACM TRANSACTIONS ON NETWORKING, 2024, 32 (06) : 4885 - 4900
  • [9] FL-MAB: Client Selection and Monetization for Blockchain-Based Federated Learning
    Batool, Zahra
    Zhang, Kaiwen
    Toews, Matthew
    37TH ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING, 2022, : 299 - 307
  • [10] Secure Data Sharing in Federated Learning through Blockchain-Based Aggregation
    Liu, Bowen
    Tang, Qiang
    FUTURE INTERNET, 2024, 16 (04)