ESB-FL: Efficient and Secure Blockchain-Based Federated Learning With Fair Payment

被引:7
|
作者
Chen, Biwen [1 ,2 ,3 ]
Zeng, Honghong [1 ]
Xiang, Tao [1 ]
Guo, Shangwei [1 ]
Zhang, Tianwei [4 ]
Liu, Yang [4 ]
机构
[1] Chongqing Univ, Coll Comp Sci, Chongqing 400044, Peoples R China
[2] State Key Lab Cryptol, Beijing 100878, Peoples R China
[3] Guilin Univ Elect Technol, Guangxi Key Lab Trusted Software, Guilin 541004, Peoples R China
[4] Nanyang Technol Univ, Sch Comp Sci & Engn, Singapore 639798, Singapore
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Task analysis; Blockchains; Privacy; Data privacy; Computational modeling; Encryption; Training; Blockchain; fair payment; federated learning; function encryption; privacy protection; INFERENCE; INTERNET;
D O I
10.1109/TBDATA.2022.3177170
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Federated learning (FL) is a technique that enables multiple parties to collaboratively train a model without sharing raw private data, and it is ideal for smart healthcare. However, it raises new privacy concerns due to the risk of privacy-sensitive medical data leakage. It is not until recently that the privacy-preserving FL (PPFL) has been introduced as a solution to ensure the privacy of training processes. Unfortunately, most existing PPFL schemes are highly dependent on complex cryptographic mechanisms or fail to guarantee the accuracy of training models. Besides, there has been little research on the fairness of the payment procedure in the PPFL with incentive mechanisms. To address the above concerns, we first construct an efficient non-interactive designated decryptor function encryption (NDD-FE) scheme to protect the privacy of training data while maintaining high communication performance. We then propose a blockchain-based PPFL framework with fair payment for medical image detection, namely ESB-FL, by combining the NDD-FE and an elaborately designed blockchain. ESB-FL not only inherits the characteristics of the NDD-FE scheme, but it also ensures the interests of each participant. We finally conduct extensive security analysis and experiments to show that our new framework has enhanced security, good accuracy, and high efficiency.
引用
收藏
页码:761 / 774
页数:14
相关论文
共 50 条
  • [21] Blockchain-Based Federated Learning in Medicine
    El Rifai, Omar
    Biotteau, Maelle
    de Boissezon, Xavier
    Megdiche, Imen
    Ravat, Franck
    Teste, Olivier
    ARTIFICIAL INTELLIGENCE IN MEDICINE (AIME 2020), 2020, : 214 - 224
  • [22] Blockchain-based Secure Aggregation for Federated Learning with a Traffic Prediction Use Case
    Zhang, Qiong
    Palacharla, Paparao
    Sekiya, Motoyoshi
    Suga, Junichi
    Katagiri, Toru
    PROCEEDINGS OF THE 2021 IEEE 7TH INTERNATIONAL CONFERENCE ON NETWORK SOFTWARIZATION (NETSOFT 2021): ACCELERATING NETWORK SOFTWARIZATION IN THE COGNITIVE AGE, 2021, : 372 - 374
  • [23] A Secure and Flexible Blockchain-Based Offline Payment Protocol
    Jie, Wanqing
    Qiu, Wangjie
    Koe, Arthur Sandor Voundi
    Li, Jianhong
    Wang, Yin
    Wu, Yaqi
    Li, Jin
    IEEE TRANSACTIONS ON COMPUTERS, 2024, 73 (02) : 408 - 421
  • [24] BVFB: TRAINING BEHAVIOR VERIFICATION MECHANISM FOR SECURE BLOCKCHAIN-BASED FEDERATED LEARNING
    Zhang, Zhaohui
    Hu, Jiawei
    Ma, Lina
    Pei, Ruoxuan
    Wang, Pengwei
    COMPUTING AND INFORMATICS, 2022, 41 (06) : 1401 - 1424
  • [25] Secure verifiable aggregation for blockchain-based federated averaging
    Zhu, Saide
    Li, Ruinian
    Cai, Zhipeng
    Kim, Donghyun
    Seo, Daehee
    Li, Wei
    HIGH-CONFIDENCE COMPUTING, 2022, 2 (01):
  • [26] IoV-SFL: A blockchain-based federated learning framework for secure and efficient data sharing in the internet of vehicles
    Ullah, Irshad
    Deng, Xiaoheng
    Pei, Xinjun
    Mushtaq, Husnain
    Uzair, Muhammad
    PEER-TO-PEER NETWORKING AND APPLICATIONS, 2025, 18 (01) : 23 - 23
  • [27] Secure Pub-Sub: Blockchain-Based Fair Payment With Reputation for Reliable Cyber Physical Systems
    Zhao, Yanqi
    Li, Yannan
    Mu, Qilin
    Yang, Bo
    Yu, Yong
    IEEE ACCESS, 2018, 6 : 12295 - 12303
  • [28] Blockchain-Based Federated Learning: A Systematic Survey
    Huang, Junqin
    Kong, Linghe
    Chen, Guihai
    Xiang, Qiao
    Chen, Xi
    Liu, Xue
    IEEE NETWORK, 2023, 37 (06): : 150 - 157
  • [29] An Robust Secure Blockchain-Based Hierarchical Asynchronous Federated Learning Scheme for Internet of Things
    Chen, Yonghui
    Yan, Linglong
    Ai, Daxiang
    IEEE ACCESS, 2024, 12 : 165280 - 165297
  • [30] Secure and Scalable Blockchain-Based Federated Learning for Cryptocurrency Fraud Detection: A Systematic Review
    Ahmed, Ahmed Abdelmoamen
    Alabi, Oluwayemisi O.
    IEEE ACCESS, 2024, 12 : 102219 - 102241