ESB-FL: Efficient and Secure Blockchain-Based Federated Learning With Fair Payment

被引:7
|
作者
Chen, Biwen [1 ,2 ,3 ]
Zeng, Honghong [1 ]
Xiang, Tao [1 ]
Guo, Shangwei [1 ]
Zhang, Tianwei [4 ]
Liu, Yang [4 ]
机构
[1] Chongqing Univ, Coll Comp Sci, Chongqing 400044, Peoples R China
[2] State Key Lab Cryptol, Beijing 100878, Peoples R China
[3] Guilin Univ Elect Technol, Guangxi Key Lab Trusted Software, Guilin 541004, Peoples R China
[4] Nanyang Technol Univ, Sch Comp Sci & Engn, Singapore 639798, Singapore
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Task analysis; Blockchains; Privacy; Data privacy; Computational modeling; Encryption; Training; Blockchain; fair payment; federated learning; function encryption; privacy protection; INFERENCE; INTERNET;
D O I
10.1109/TBDATA.2022.3177170
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Federated learning (FL) is a technique that enables multiple parties to collaboratively train a model without sharing raw private data, and it is ideal for smart healthcare. However, it raises new privacy concerns due to the risk of privacy-sensitive medical data leakage. It is not until recently that the privacy-preserving FL (PPFL) has been introduced as a solution to ensure the privacy of training processes. Unfortunately, most existing PPFL schemes are highly dependent on complex cryptographic mechanisms or fail to guarantee the accuracy of training models. Besides, there has been little research on the fairness of the payment procedure in the PPFL with incentive mechanisms. To address the above concerns, we first construct an efficient non-interactive designated decryptor function encryption (NDD-FE) scheme to protect the privacy of training data while maintaining high communication performance. We then propose a blockchain-based PPFL framework with fair payment for medical image detection, namely ESB-FL, by combining the NDD-FE and an elaborately designed blockchain. ESB-FL not only inherits the characteristics of the NDD-FE scheme, but it also ensures the interests of each participant. We finally conduct extensive security analysis and experiments to show that our new framework has enhanced security, good accuracy, and high efficiency.
引用
收藏
页码:761 / 774
页数:14
相关论文
共 50 条
  • [41] An End-Process Blockchain-Based Secure Aggregation Mechanism Using Federated Machine Learning
    Mbonu, Washington Enyinna
    Maple, Carsten
    Epiphaniou, Gregory
    ELECTRONICS, 2023, 12 (21)
  • [42] Blockchain-Based Federated Learning With Secure Aggregation in Trusted Execution Environment for Internet-of-Things
    Kalapaaking, Aditya Pribadi
    Khalil, Ibrahim
    Rahman, Mohammad Saidur
    Atiquzzaman, Mohammed
    Yi, Xun
    Almashor, Mahathir
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2023, 19 (02) : 1703 - 1714
  • [43] Blockchain-Based Federated Learning: A Survey and New Perspectives
    Ning, Weiguang
    Zhu, Yingjuan
    Song, Caixia
    Li, Hongxia
    Zhu, Lihui
    Xie, Jinbao
    Chen, Tianyu
    Xu, Tong
    Xu, Xi
    Gao, Jiwei
    APPLIED SCIENCES-BASEL, 2024, 14 (20):
  • [44] Blockchain-Based Distributed Federated Learning in Smart Grid
    Antal, Marcel
    Mihailescu, Vlad
    Cioara, Tudor
    Anghel, Ionut
    MATHEMATICS, 2022, 10 (23)
  • [45] FLoBC: A Decentralized Blockchain-Based Federated Learning Framework
    Ghanem, Mohamed
    Dawoud, Fadi
    Gamal, Habiba
    Soliman, Eslam
    El-Batt, Tamer
    El-Batt, Tamer
    2022 FOURTH INTERNATIONAL CONFERENCE ON BLOCKCHAIN COMPUTING AND APPLICATIONS (BCCA), 2022, : 85 - 92
  • [46] Blockchain-Based Architectural Framework for Vertical Federated Learning
    钱辰
    朱雯晶
    Journal of Donghua University(English Edition), 2022, 39 (03) : 211 - 219
  • [47] Federated learning with blockchain-based model aggregation and incentives
    Cherukuri R.V.
    Lavanya Devi G.
    Ramesh N.
    International Journal of Computers and Applications, 2024, 46 (06) : 407 - 417
  • [48] A Survey on Blockchain-Based Federated Learning and Data Privacy
    Chhetri, Bipin
    Gopali, Saroj
    Olapojoye, Rukayat
    Dehbashi, Samin
    Namin, Akhar Siami
    2023 IEEE 47TH ANNUAL COMPUTERS, SOFTWARE, AND APPLICATIONS CONFERENCE, COMPSAC, 2023, : 1311 - 1318
  • [49] BDVFL: Blockchain-based Decentralized Vertical Federated Learning
    Wang, Shuo
    Gai, Keke
    Yu, Jing
    Zhu, Liehuang
    23RD IEEE INTERNATIONAL CONFERENCE ON DATA MINING, ICDM 2023, 2023, : 628 - 637
  • [50] Blockchain-based federated learning methodologies in smart environments
    Dong Li
    Zai Luo
    Bo Cao
    Cluster Computing, 2022, 25 : 2585 - 2599