Blockchain-Based Distributed Federated Learning in Smart Grid

被引:7
|
作者
Antal, Marcel [1 ]
Mihailescu, Vlad [1 ]
Cioara, Tudor [1 ]
Anghel, Ionut [1 ]
机构
[1] Tech Univ Cluj Napoca, Comp Sci Dept, Memorandumului 28, Cluj Napoca 400114, Romania
基金
欧盟地平线“2020”;
关键词
energy prediction; federated learning; blockchain; smart grid management; demand response; smart contracts; machine learning; PRIVACY;
D O I
10.3390/math10234499
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The participation of prosumers in demand-response programs is essential for the success of demand-side management in renewable-powered energy grids. Unfortunately, the engagement is still low due to concerns related to the privacy of their energy data used in the prediction processes. In this paper, we propose a blockchain-based distributed federated learning (FL) technique for energy-demand prediction that combines FL with blockchain to provide data privacy and trust features for energy prosumers. The privacy-sensitive energy data are stored locally at edge prosumer nodes without revealing it to third parties, with only the learned local model weights being shared using a blockchain network. The global federated model is not centralized but distributed and replicated over the blockchain overlay, ensuring the model immutability and provenance of parameter updates. We had proposed smart contracts to deal with the integration of local machine-learning prediction models with the blockchain, defining functions for the model parameters' scaling and reduction of blockchain overhead. The centralized, local-edge, and blockchain-integrated models are comparatively evaluated for prediction of energy demand 24 h ahead using a multi-layer perceptron model and the monitored energy data of several prosumers. The results show only a slight decrease in prediction accuracy in the case of blockchain-based distributed FL with reliable data privacy support compared with the centralized learning solution.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Blockchain-based federated learning methodologies in smart environments
    Dong Li
    Zai Luo
    Bo Cao
    Cluster Computing, 2022, 25 : 2585 - 2599
  • [2] A Blockchain-Based Federated Learning Method for Smart Healthcare
    Chang, Yuxia
    Fang, Chen
    Sun, Wenzhuo
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2021, 2021
  • [3] Blockchain-based federated learning methodologies in smart environments
    Li, Dong
    Luo, Zai
    Cao, Bo
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2022, 25 (04): : 2585 - 2599
  • [4] Distributed Blockchain-Based Authentication and Authorization Protocol for Smart Grid
    Zhong, Yuxin
    Zhou, Mi
    Li, Jiangnan
    Chen, Jiahui
    Liu, Yan
    Zhao, Yun
    Hu, Muchuang
    WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2021, 2021
  • [5] Blockchain-Based Decentralized Federated Learning
    Dirir, Ahmed
    Salah, Khaled
    Svetinovic, Davor
    Jayaraman, Raja
    Yaqoob, Ibrar
    Kanhere, Salil S.
    2022 FOURTH INTERNATIONAL CONFERENCE ON BLOCKCHAIN COMPUTING AND APPLICATIONS (BCCA), 2022, : 99 - 106
  • [6] A Survey on Blockchain-Based Federated Learning
    Wu, Lang
    Ruan, Weijian
    Hu, Jinhui
    He, Yaobin
    Pau, Giovanni
    FUTURE INTERNET, 2023, 15 (12)
  • [7] Blockchain-Based Federated Learning in Medicine
    El Rifai, Omar
    Biotteau, Maelle
    de Boissezon, Xavier
    Megdiche, Imen
    Ravat, Franck
    Teste, Olivier
    ARTIFICIAL INTELLIGENCE IN MEDICINE (AIME 2020), 2020, : 214 - 224
  • [8] Towards Blockchain-Based Federated Machine Learning: Smart Contract for Model Inference
    Drungilas, Vaidotas
    Vaiciukynas, Evaldas
    Jurgelaitis, Mantas
    Butkiene, Rita
    Ceponiene, Lina
    APPLIED SCIENCES-BASEL, 2021, 11 (03): : 1 - 21
  • [9] Towards a Secured Blockchain-based Smart Grid
    Samy, Salma
    Azab, Mohamed
    Rizk, Mohamed
    2021 IEEE 11TH ANNUAL COMPUTING AND COMMUNICATION WORKSHOP AND CONFERENCE (CCWC), 2021, : 1066 - 1069
  • [10] Blockchain-based security in smart grid network
    Mishra, Shailendra
    INTERNATIONAL JOURNAL OF COMMUNICATION NETWORKS AND DISTRIBUTED SYSTEMS, 2022, 28 (04) : 365 - 388