Blockchain-Based Distributed Federated Learning in Smart Grid

被引:7
|
作者
Antal, Marcel [1 ]
Mihailescu, Vlad [1 ]
Cioara, Tudor [1 ]
Anghel, Ionut [1 ]
机构
[1] Tech Univ Cluj Napoca, Comp Sci Dept, Memorandumului 28, Cluj Napoca 400114, Romania
基金
欧盟地平线“2020”;
关键词
energy prediction; federated learning; blockchain; smart grid management; demand response; smart contracts; machine learning; PRIVACY;
D O I
10.3390/math10234499
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The participation of prosumers in demand-response programs is essential for the success of demand-side management in renewable-powered energy grids. Unfortunately, the engagement is still low due to concerns related to the privacy of their energy data used in the prediction processes. In this paper, we propose a blockchain-based distributed federated learning (FL) technique for energy-demand prediction that combines FL with blockchain to provide data privacy and trust features for energy prosumers. The privacy-sensitive energy data are stored locally at edge prosumer nodes without revealing it to third parties, with only the learned local model weights being shared using a blockchain network. The global federated model is not centralized but distributed and replicated over the blockchain overlay, ensuring the model immutability and provenance of parameter updates. We had proposed smart contracts to deal with the integration of local machine-learning prediction models with the blockchain, defining functions for the model parameters' scaling and reduction of blockchain overhead. The centralized, local-edge, and blockchain-integrated models are comparatively evaluated for prediction of energy demand 24 h ahead using a multi-layer perceptron model and the monitored energy data of several prosumers. The results show only a slight decrease in prediction accuracy in the case of blockchain-based distributed FL with reliable data privacy support compared with the centralized learning solution.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] BDVFL: Blockchain-based Decentralized Vertical Federated Learning
    Wang, Shuo
    Gai, Keke
    Yu, Jing
    Zhu, Liehuang
    23RD IEEE INTERNATIONAL CONFERENCE ON DATA MINING, ICDM 2023, 2023, : 628 - 637
  • [22] BAFL: A Blockchain-Based Asynchronous Federated Learning Framework
    Feng, Lei
    Zhao, Yiqi
    Guo, Shaoyong
    Qiu, Xuesong
    Li, Wenjing
    Yu, Peng
    IEEE TRANSACTIONS ON COMPUTERS, 2022, 71 (05) : 1092 - 1103
  • [23] A Blockchain-Based Cooperative Authentication Mechanism for Smart Grid
    Li, Yunfa
    Zhang, Di
    Wang, Zetian
    Liu, Guanxu
    APPLIED SCIENCES-BASEL, 2023, 13 (11):
  • [24] Privacy and Transparency in Blockchain-Based Smart Grid Operations
    Loreti, Pierpaolo
    Bracciale, Lorenzo
    Raso, Emanuele
    Bianchi, Giuseppe
    Sanseverino, Eleonora Riva
    Gallo, Pierluigi
    IEEE ACCESS, 2023, 11 : 120666 - 120679
  • [25] Blockchain-Based Federated Learning for Data Privacy and Security
    Murugan, G.
    Divyashree, D.
    Ravisankar, P.
    Vasudevan, M.
    Karthikeyan, T.
    Singh, Devesh Pratap
    2024 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATION AND APPLIED INFORMATICS, ACCAI 2024, 2024,
  • [26] Time-Efficient Blockchain-Based Federated Learning
    Lin, Rongping
    Wang, Fan
    Luo, Shan
    Wang, Xiong
    Zukerman, Moshe
    IEEE-ACM TRANSACTIONS ON NETWORKING, 2024, 32 (06) : 4885 - 4900
  • [27] Blockchain-based smart grid power trading technology
    Kai Su
    Yun Yu
    Jianzhong Zhang
    Journal of Engineering and Applied Science, 2024, 71 (1):
  • [28] Blockchain-based Secure Client Selection in Federated Learning
    Nguyen, Truc
    Thai, Phuc
    Jeter, Tre R.
    Dinht, Thang N.
    Thai, My T.
    2022 IEEE INTERNATIONAL CONFERENCE ON BLOCKCHAIN AND CRYPTOCURRENCY (IEEE ICBC 2022), 2022,
  • [29] ScaleSFL: A Sharding Solution for Blockchain-Based Federated Learning
    Madill, Evan
    Nguyen, Ben
    Leung, Carson K.
    Rouhani, Sara
    BSCI'22: PROCEEDINGS OF THE FOURTH ACM INTERNATIONAL SYMPOSIUM ON BLOCKCHAIN AND SECURE CRITICAL INFRASTRUCTURE, 2022, : 95 - 106
  • [30] The Design of Reputation System for Blockchain-based Federated Learning
    Chen, Xinyan
    Wang, Taotao
    Zhang, Shengli
    2021 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND BLOCKCHAIN TECHNOLOGY (AIBT 2021), 2021, : 114 - 120