A Blockchain-Based Model Migration Approach for Secure and Sustainable Federated Learning in IoT Systems

被引:31
|
作者
Zhang, Cheng [1 ]
Xu, Yang [1 ]
Elahi, Haroon [2 ]
Zhang, Deyu [3 ]
Tan, Yunlin [1 ]
Chen, Junxian [1 ]
Zhang, Yaoxue [1 ]
机构
[1] Hunan Univ, Coll Comp Sci & Elect Engn, Changsha 410082, Peoples R China
[2] Umea Univ, Dept Comp Sci, S-90187 Umea, Sweden
[3] Cent South Univ, Sch Comp Sci & Engn, Changsha 410083, Peoples R China
基金
中国国家自然科学基金;
关键词
Collaborative work; Training; Blockchains; Computational modeling; Data models; Servers; Costs; Blockchain; federated learning; Internet of Things (IoT); security; sustainable computing; training acceleration; INTERNET; THINGS;
D O I
10.1109/JIOT.2022.3171926
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Model migration can accelerate model convergence during federated learning on the Internet of Things (IoT) devices and reduce training costs by transferring feature extractors from fast to slow devices, which, in turn, enables sustainable computing. However, malicious or lazy devices may migrate the fake models or resist sharing models for their benefit, reducing the desired efficiency and reliability of a federated learning system. To this end, this work presents a blockchain-based model migration approach for resource-constrained IoT systems. The proposed approach aims to achieve secure model migration and speed up model training while minimizing computation cost. We first develop an incentive mechanism considering the economic benefits of fast devices, which breaks the Nash equilibrium established by lazy devices and encourages capable devices to train and share models. Second, we design a clustering-based algorithm for identifying malicious devices and preventing them from defrauding incentives. Third, we use blockchain to ensure trustworthiness in model migration and incentive processes. Blockchain records the interaction between the central server and IoT devices and runs the incentive algorithm without exposing the devices' private data. Theoretical analysis and experimental results show that the proposed approach can accelerate federated learning rates, reduce model training computation costs to increase sustainability, and resist malicious attacks.
引用
收藏
页码:6574 / 6585
页数:12
相关论文
共 50 条
  • [11] Privacy-Preserving Blockchain-Based Federated Learning for IoT Devices
    Zhao, Yang
    Zhao, Jun
    Jiang, Linshan
    Tan, Rui
    Niyato, Dusit
    Li, Zengxiang
    Lyu, Lingjuan
    Liu, Yingbo
    IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (03) : 1817 - 1829
  • [12] Federated learning with blockchain-based model aggregation and incentives
    Cherukuri R.V.
    Lavanya Devi G.
    Ramesh N.
    International Journal of Computers and Applications, 2024, 46 (06) : 407 - 417
  • [13] Blockchain managed federated learning for a secure IoT framework
    Chai, Jiayong
    Li, Jian
    Wei, Muhua
    Zhu, Chuangying
    EURASIP JOURNAL ON WIRELESS COMMUNICATIONS AND NETWORKING, 2023, 2023 (01)
  • [14] Blockchain-Based Secure Crowdsourcing in Wireless IoT
    Feng D.
    Zhang L.
    Zhang S.
    Wu Q.
    Xia X.
    J. Commun. Inf. Netw., 2022, 1 (23-36): : 23 - 36
  • [15] Blockchain-Based Decentralized Federated Learning
    Dirir, Ahmed
    Salah, Khaled
    Svetinovic, Davor
    Jayaraman, Raja
    Yaqoob, Ibrar
    Kanhere, Salil S.
    2022 FOURTH INTERNATIONAL CONFERENCE ON BLOCKCHAIN COMPUTING AND APPLICATIONS (BCCA), 2022, : 99 - 106
  • [16] Blockchain-Based structures for a secure and operate IoT
    Kuzmin, Alexander
    2017 JOINT 13TH CTTE AND 10TH CMI CONFERENCE ON INTERNET OF THINGS - BUSINESS MODELS, USERS, AND NETWORKS, 2017,
  • [17] A Blockchain-Based Approach for Secure Data Migration From the Cloud to the Decentralized Storage Systems
    Khan, Hooria
    Zahoor, Ehtesham
    Akhtar, Sabina
    Perrin, Olivier
    INTERNATIONAL JOURNAL OF WEB SERVICES RESEARCH, 2022, 19 (01)
  • [18] A Survey on Blockchain-Based Federated Learning
    Wu, Lang
    Ruan, Weijian
    Hu, Jinhui
    He, Yaobin
    Pau, Giovanni
    FUTURE INTERNET, 2023, 15 (12)
  • [19] A blockchain-based audit approach for encrypted data in federated learning
    Zhe Sun
    Junping Wan
    Lihua Yin
    Zhiqiang Cao
    Tianjie Luo
    Bin Wang
    Digital Communications and Networks, 2022, 8 (05) : 614 - 624
  • [20] Blockchain-Based Federated Learning in Medicine
    El Rifai, Omar
    Biotteau, Maelle
    de Boissezon, Xavier
    Megdiche, Imen
    Ravat, Franck
    Teste, Olivier
    ARTIFICIAL INTELLIGENCE IN MEDICINE (AIME 2020), 2020, : 214 - 224