Studying Capabilities of a Fast Monitor for Beam Collisions by Monte Carlo Simulations and Machine Learning Methods

被引:0
|
作者
Sandul, V. S. [1 ]
Feofilov, G. A. [1 ]
Valiev, F. F. [1 ]
机构
[1] St Petersburg State Univ, St Petersburg 198504, Russia
基金
俄罗斯基础研究基金会;
关键词
D O I
10.1134/S1063779623040275
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
A system for fast monitoring of intense beam collisions in experiments at the NICA collider, based on segmented ring detectors on microchannel plates, is considered. Simulation of the monitoring system has been carried out using a DQGSM event generator. It is shown that in each collision event, the monitoring system and machine learning algorithms can ensure the accuracy of finding the position of the interaction point with the standard deviation s =12 mm.
引用
收藏
页码:712 / 716
页数:5
相关论文
共 50 条
  • [41] FAST ALGORITHM FOR MONTE-CARLO SIMULATIONS OF SYSTEMS WITH FERMIONS
    GRADY, M
    PHYSICAL REVIEW D, 1985, 32 (06): : 1496 - 1502
  • [42] Fast calculation of the density of states of a fluid by Monte Carlo simulations
    Yan, QL
    de Pablo, JJ
    PHYSICAL REVIEW LETTERS, 2003, 90 (03)
  • [43] Monte Carlo simulations towards the formation of a positronium coherent beam
    Sacerdoti, M.
    Toso, V.
    Vinelli, G.
    Bayo, M.
    Rosi, G.
    Salvi, L.
    Tino, G. M.
    Giammarchi, M.
    Ferragut, R.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2025, 1071
  • [44] MONTE-CARLO SIMULATIONS FOR ELECTRON-BEAM EXPOSURES
    NEUKERMANS, AP
    EATON, SG
    HEWLETT-PACKARD JOURNAL, 1981, 32 (12): : 24 - 25
  • [45] Experimental studies and Monte Carlo simulations for beam loss monitors
    Yang, Tao
    Tian, Jianmin
    Zeng, Lei
    Xu, Taoguang
    Huang, Weiling
    Sun, Jilei
    Li, Fang
    Qiu, Ruiyang
    Xu, Zhihong
    Meng, Ming
    Wang, Anxin
    Li, Peng
    Liu, Mengyu
    Nie, Xiaojun
    Zhou, Jianrong
    Sun, Zhijia
    Ouyang, Qun
    PHYSICAL REVIEW ACCELERATORS AND BEAMS, 2021, 24 (03)
  • [46] Monte Carlo methods in beam dynamics optimization problem
    Vladimirova, L. V.
    VESTNIK SANKT-PETERBURGSKOGO UNIVERSITETA SERIYA 10 PRIKLADNAYA MATEMATIKA INFORMATIKA PROTSESSY UPRAVLENIYA, 2014, 10 (01): : 31 - 39
  • [47] A fast Monte Carlo algorithm for studying bottle-brush polymers
    Hsu, Hsiao-Ping
    Paul, Wolfgang
    COMPUTER PHYSICS COMMUNICATIONS, 2011, 182 (10) : 2115 - 2121
  • [48] DeepBeam: a machine learning framework for tuning the primary electron beam of the PRIMO Monte Carlo software
    Tabor, Zbislaw
    Kabat, Damian
    Waligorski, Michael P. R.
    RADIATION ONCOLOGY, 2021, 16 (01)
  • [49] DeepBeam: a machine learning framework for tuning the primary electron beam of the PRIMO Monte Carlo software
    Zbisław Tabor
    Damian Kabat
    Michael P. R. Waligórski
    Radiation Oncology, 16
  • [50] Secondary monitor unit calculations for VMAT using parallelized Monte Carlo simulations
    Bhagroo, Stephen
    French, Samuel B.
    Mathews, Joshua A.
    Nazareth, Daryl P.
    JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, 2019, 20 (06): : 60 - 69