Studying Capabilities of a Fast Monitor for Beam Collisions by Monte Carlo Simulations and Machine Learning Methods

被引:0
|
作者
Sandul, V. S. [1 ]
Feofilov, G. A. [1 ]
Valiev, F. F. [1 ]
机构
[1] St Petersburg State Univ, St Petersburg 198504, Russia
基金
俄罗斯基础研究基金会;
关键词
D O I
10.1134/S1063779623040275
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
A system for fast monitoring of intense beam collisions in experiments at the NICA collider, based on segmented ring detectors on microchannel plates, is considered. Simulation of the monitoring system has been carried out using a DQGSM event generator. It is shown that in each collision event, the monitoring system and machine learning algorithms can ensure the accuracy of finding the position of the interaction point with the standard deviation s =12 mm.
引用
收藏
页码:712 / 716
页数:5
相关论文
共 50 条
  • [21] Perspectives for Monte Carlo simulations on the CNN universal machine
    Ercsey-Ravasz, M.
    Roska, T.
    Neda, Z.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2006, 17 (06): : 909 - 922
  • [22] Precision annealing Monte Carlo methods for statistical data assimilation and machine learning
    Fang, Zheng
    Wong, Adrian S.
    Hao, Kangbo
    Ty, Alexander J. A.
    Abarbanel, Henry D., I
    PHYSICAL REVIEW RESEARCH, 2020, 2 (01):
  • [23] Monte Carlo simulation of ion beam and background gas collisions
    Cai, Shixian
    Wang, Kedong
    Huang, Wei
    Wang, Jinghui
    Wang, Kai
    Fu, Dongpo
    Li, Jie
    Zhang, Caijie
    Zhu, Tingru
    Xu, Zhiying
    Zhu, Kun
    PHYSICAL REVIEW ACCELERATORS AND BEAMS, 2025, 28 (03)
  • [24] Development of burnup methods and capabilities in Monte Carlo code RMC
    She, Ding
    Liu, Yuxuan
    Wang, Kan
    Yu, Ganglin
    Forget, Benoit
    Romano, Paul K.
    Smith, Kord
    ANNALS OF NUCLEAR ENERGY, 2013, 51 : 289 - 294
  • [25] Monte Carlo Gradient Estimation in Machine Learning
    Mohamed, Shakir
    Rosca, Mihaela
    Figurnov, Michael
    Mnih, Andriy
    JOURNAL OF MACHINE LEARNING RESEARCH, 2020, 21
  • [26] Intelligent interpolation by Monte Carlo machine learning
    Jia, Yongna
    Yu, Siwei
    Ma, Jianwei
    GEOPHYSICS, 2018, 83 (02) : V83 - V97
  • [27] Monte Carlo Gradient Estimation in Machine Learning
    Mohamed, Shakir
    Rosca, Mihaela
    Figurnov, Michael
    Mnih, Andriy
    Journal of Machine Learning Research, 2020, 21
  • [28] Fluence calculation methods in Monte Carlo dosimetry simulations
    Hartmann, Guenther H.
    Andreo, Pedro
    ZEITSCHRIFT FUR MEDIZINISCHE PHYSIK, 2019, 29 (03): : 239 - 248
  • [29] Monte Carlo methods for device simulations in radiation therapy
    Park, Hyojun
    Paganetti, Harald
    Schuemann, Jan
    Jia, Xun
    Min, Chul Hee
    PHYSICS IN MEDICINE AND BIOLOGY, 2021, 66 (18):
  • [30] Machine Learning Diffusion Monte Carlo Energies
    Ryczko, Kevin
    Krogel, Jaron T.
    Tamblyn, Isaac
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2022, 18 (12) : 7695 - 7701