Studying Capabilities of a Fast Monitor for Beam Collisions by Monte Carlo Simulations and Machine Learning Methods

被引:0
|
作者
Sandul, V. S. [1 ]
Feofilov, G. A. [1 ]
Valiev, F. F. [1 ]
机构
[1] St Petersburg State Univ, St Petersburg 198504, Russia
基金
俄罗斯基础研究基金会;
关键词
D O I
10.1134/S1063779623040275
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
A system for fast monitoring of intense beam collisions in experiments at the NICA collider, based on segmented ring detectors on microchannel plates, is considered. Simulation of the monitoring system has been carried out using a DQGSM event generator. It is shown that in each collision event, the monitoring system and machine learning algorithms can ensure the accuracy of finding the position of the interaction point with the standard deviation s =12 mm.
引用
收藏
页码:712 / 716
页数:5
相关论文
共 50 条
  • [31] Machine Learning Diffusion Monte Carlo Forces
    Huang, Cancan
    Rubenstein, Brenda M.
    JOURNAL OF PHYSICAL CHEMISTRY A, 2023, 127 (01): : 339 - 355
  • [32] Adaptive Monte Carlo methods for rare event simulations
    Hsieh, MH
    PROCEEDINGS OF THE 2002 WINTER SIMULATION CONFERENCE, VOLS 1 AND 2, 2002, : 108 - 115
  • [33] Studying the number of lineages through Monte Carlo simulations of biological ageing
    De Oliveira, SM
    De Medeiros, GA
    De Oliveira, PMC
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 1998, 9 (06): : 809 - 813
  • [34] A STOCHASTIC APPROACH TO STUDYING BIOCHEMICAL REACTIONS WITHOUT MONTE CARLO SIMULATIONS
    Mane, Vibha
    Bugallo, Monica F.
    Djuric, Petar M.
    2009 IEEE/SP 15TH WORKSHOP ON STATISTICAL SIGNAL PROCESSING, VOLS 1 AND 2, 2009, : 549 - 552
  • [35] A multivariate approach to determine electron beam parameters for a Monte Carlo 6 MV Linac model: Statistical and machine learning methods
    Yang, Hye Jeong
    Kim, Tae Hoon
    Schaarschmidt, Thomas
    Park, Dong-Wook
    Kang, Seung Hee
    Chung, Hyun-Tai
    Suh, Tae Suk
    PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2022, 93 : 38 - 45
  • [36] Advanced financial market forecasting: integrating Monte Carlo simulations with ensemble Machine Learning models
    Deep, Akash
    QUANTITATIVE FINANCE AND ECONOMICS, 2024, 8 (02): : 286 - 314
  • [37] Monte Carlo methods and their analysis for Coulomb collisions in multicomponent plasmas
    Bobylev, A. V.
    Potapenko, I. F.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 246 : 123 - 144
  • [38] Training Data Selection for Machine Learning-Enhanced Monte Carlo Simulations in Structural Dynamics
    Thaler, Denny
    Elezaj, Leonard
    Bamer, Franz
    Markert, Bernd
    APPLIED SCIENCES-BASEL, 2022, 12 (02):
  • [39] The use of optimized Monte Carlo methods for studying spin glasses
    Marinari, E
    Parisi, G
    Ricci-Tersenghi, F
    Zuliani, F
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (03): : 383 - 390
  • [40] An efficient sampling method for fast and accurate Monte Carlo Simulations
    Diermanse, F. L. M.
    Carroll, D. G.
    Beckers, J. V. L.
    Ayre, R.
    AUSTRALASIAN JOURNAL OF WATER RESOURCES, 2016, 20 (02): : 160 - 168