SISTA: Learning Optimal Transport Costs under Sparsity Constraints

被引:1
|
作者
Carlier, Guillaume [1 ]
Dupuy, Arnaud [2 ]
Galichon, Alfred [3 ]
Sun, Yifei [3 ]
机构
[1] Univ Paris 09, PSL, CEREMADE, Pl Marechal deLattre de Tassigny, F-75775 Paris 16, France
[2] Univ Luxembourg, Campus Kirchberg,6 Rue Richard Coudenhove Kalergi, L-1359 Luxembourg, Luxembourg
[3] Courant Inst, 251 Mercer St, New York, NY 10012 USA
基金
欧洲研究理事会; 美国国家科学基金会;
关键词
MIGRATION;
D O I
10.1002/cpa.22047
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we describe a novel iterative procedure called SISTA to learn the underlying cost in optimal transport problems. SISTA is a hybrid between two classical methods, coordinate descent ("S"-inkhorn) and proximal gradient descent ("ISTA"). It alternates between a phase of exact minimization over the transport potentials and a phase of proximal gradient descent over the parameters of the transport cost. We prove that this method converges linearly, and we illustrate on simulated examples that it is significantly faster than both coordinate descent and ISTA. We apply it to estimating a model of migration, which predicts the flow of migrants using country-specific characteristics and pairwise measures of dissimilarity between countries. This application demonstrates the effectiveness of machine learning in quantitative social sciences. (c) 2022 Wiley Periodicals LLC.
引用
收藏
页码:1659 / 1677
页数:19
相关论文
共 50 条
  • [41] Dictionary Learning with Incoherence and Sparsity Constraints for Sparse Representation of Nonnegative Signals
    Tang, Zunyi
    Ding, Shuxue
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2013, E96D (05): : 1192 - 1203
  • [42] SparseFIS: Data-Driven Learning of Fuzzy Systems With Sparsity Constraints
    Lughofer, Edwin
    Kindermann, Stefan
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2010, 18 (02) : 396 - 411
  • [43] OPTIMAL WOOL FLOWS FOR MINIMIZATION OF TRANSPORT COSTS
    DENT, W
    AUSTRALIAN JOURNAL OF AGRICULTURAL ECONOMICS, 1966, 10 (02): : 142 - 157
  • [44] The optimal mass transport problem for relativistic costs
    Jérôme Bertrand
    Marjolaine Puel
    Calculus of Variations and Partial Differential Equations, 2013, 46 : 353 - 374
  • [45] A new class of costs for optimal transport planning
    Alibert, J-J
    Bouchitte, G.
    Champion, T.
    EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2019, 30 (06) : 1229 - 1263
  • [46] OPTIMAL PARTIAL TRANSPORT PROBLEM WITH LAGRANGIAN COSTS
    Igbida, Noureddine
    Van Thanh Nguyen
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2019, 52 (05): : 2109 - 2132
  • [47] OPTIMAL TAXATION IN A SPATIAL ECONOMY WITH TRANSPORT COSTS
    ARNOTT, R
    JOURNAL OF PUBLIC ECONOMICS, 1979, 11 (03) : 307 - 334
  • [48] The optimal mass transport problem for relativistic costs
    Bertrand, Jerome
    Puel, Marjolaine
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2013, 46 (1-2) : 353 - 374
  • [49] Optimal Market Dealing Under Constraints
    Chevalier, Etienne
    Gaigi, M'hamed
    Vath, Vathana Ly
    Mnif, Mohamed
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2017, 173 (01) : 313 - 335
  • [50] OPTIMAL TRANSPORTATION UNDER NONHOLONOMIC CONSTRAINTS
    Agrachev, Andrei
    Lee, Paul
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 361 (11) : 6019 - 6047